Cation exchange is a versatile method for modifying the material composition and properties of nanostructures. However, control of the degree of exchange and material properties is difficult at the single-particle level. Successive cation exchange from CdSe to AgSe has been utilized here on the same individual nanowires to monitor the change of electronic properties in field-effect transistor devices.
View Article and Find Full Text PDFSmall voids in the absorber layer of thin-film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample-preparation artifacts. Here, synchrotron imaging is performed on a fully operational as-deposited solar cell containing a few tens of voids.
View Article and Find Full Text PDFX-ray diffraction with high spatial resolution is commonly used to characterize (poly)crystalline samples with, for example, respect to local strain, residual stress, grain boundaries and texture. However, the investigation of highly absorbing samples or the simultaneous assessment of high-Z materials by X-ray fluorescence have been limited due to the utilization of low photon energies. Here, a goniometer-based setup implemented at the P06 beamline of PETRA III that allows for micrometre spatial resolution with a photon energy of 35 keV and above is reported.
View Article and Find Full Text PDFDiffraction-limited hard X-ray optics are key components for high-resolution microscopy, in particular for upcoming synchrotron radiation sources with ultra-low emittance. Diffractive optics like multilayer Laue lenses (MLL) have the potential to reach unprecedented numerical apertures (NA) when used in a crossed geometry of two one-dimensionally focusing lenses. However, minuscule fluctuations in the manufacturing process and technical limitations for high NA X-ray lenses can prevent a diffraction-limited performance.
View Article and Find Full Text PDFWe report a multi-modal study of the electrical, chemical and structural properties of a kesterite thin-film solar cell by combining the spatially-resolved X-ray beam induced current and fluorescence imaging techniques for the evaluation of a fully functional device on a cross-section. The data allowed the correlation of the chemical composition, defects at interfaces and inhomogeneous deposition of the layers with the local charge-collection efficiency of the device. We support our observations with Monte Carlo simulations of high-energy X-ray interactions with the semiconductor device, and finite-volume modeling of the charge-collection efficiency.
View Article and Find Full Text PDFIt is widely accepted that micro- and nanoscale inhomogeneities govern the performance of many thin-film solar cell absorbers. These inhomogeneities yield material properties (e.g.
View Article and Find Full Text PDFInhomogeneities and defects often limit the overall performance of thin-film solar cells. Therefore, sophisticated microscopy approaches are sought to characterize performance and defects at the nanoscale. Here, we demonstrate, for the first time, the simultaneous assessment of composition, structure, and performance in four-fold multi-modality.
View Article and Find Full Text PDFPtychographic X-ray imaging at the highest spatial resolution requires an optimal experimental environment, providing a high coherent flux, excellent mechanical stability and a low background in the measured data. This requires, for example, a stable performance of all optical components along the entire beam path, high temperature stability, a robust sample and optics tracking system, and a scatter-free environment. This contribution summarizes the efforts along these lines to transform the nanoprobe station on beamline P06 (PETRA III) into the ptychographic nano-analytical microscope (PtyNAMi).
View Article and Find Full Text PDFX-ray beam induced current (XBIC) measurements allow mapping of the nanoscale performance of electronic devices such as solar cells. Ideally, XBIC is employed simultaneously with other techniques within a multi-modal X-ray microscopy approach. An example is given herein combining XBIC with X-ray fluorescence to enable point-by-point correlations of the electrical performance with chemical composition.
View Article and Find Full Text PDF