A new generation of cameras has made ultra-high-speed x-ray imaging at synchrotron light sources a reality, revealing never-before-seen details of sub-surface transient phenomena. We introduce a versatile indirect imaging system capable of capturing-for the first time-hundreds of sequential x-ray pulses in 16-bunch mode at the European Synchrotron Radiation Facility, recording at 5.68 Mfps over dozens of microseconds, with an effective exposure of 100 ps.
View Article and Find Full Text PDFChondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography.
View Article and Find Full Text PDFThe short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments.
View Article and Find Full Text PDF