Publications by authors named "Michael E Paulaitis"

Intercellular cytoplasmic material transfer (MT) occurs between transplanted and developing photoreceptors and ambiguates cell origin identification in developmental, transdifferentiation, and transplantation experiments. Whether MT is a photoreceptor-specific phenomenon is unclear. Retinal ganglion cell (RGC) replacement, through transdifferentiation or transplantation, holds potential for restoring vision in optic neuropathies.

View Article and Find Full Text PDF

The extracellular RNA communication consortium (ERCC) is an NIH-funded program aiming to promote the development of new technologies, resources, and knowledge about exRNAs and their carriers. After Phase 1 (2013-2018), Phase 2 of the program (ERCC2, 2019-2023) aims to fill critical gaps in knowledge and technology to enable rigorous and reproducible methods for separation and characterization of both bulk populations of exRNA carriers and single EVs. ERCC2 investigators are also developing new bioinformatic pipelines to promote data integration through the exRNA atlas database.

View Article and Find Full Text PDF

The quasichemical organization of the potential distribution theorem, molecular quasichemical theory (QCT), enables practical calculations and also provides a conceptual framework for molecular hydration phenomena. QCT can be viewed from multiple perspectives: (a) as a way to regularize an ill-conditioned statistical thermodynamic problem; (b) as an introduction of and emphasis on the neighborship characteristics of a solute of interest; or (c) as a way to include accurate electronic structure descriptions of near-neighbor interactions in defensible statistical thermodynamics by clearly defining neighborship clusters. The theory has been applied to solutes of a wide range of chemical complexity, ranging from ions that interact with water with both long-ranged and chemically intricate short-ranged interactions, to solutes that interact with water solely through traditional van der Waals interations, and including water itself.

View Article and Find Full Text PDF

We compared four orthogonal technologies for sizing, counting, and phenotyping of extracellular vesicles (EVs) and synthetic particles. The platforms were: single-particle interferometric reflectance imaging sensing (SP-IRIS) with fluorescence, nanoparticle tracking analysis (NTA) with fluorescence, microfluidic resistive pulse sensing (MRPS), and nanoflow cytometry measurement (NFCM). EVs from the human T lymphocyte line H9 (high CD81, low CD63) and the promonocytic line U937 (low CD81, high CD63) were separated from culture conditioned medium (CCM) by differential ultracentrifugation (dUC) or a combination of ultrafiltration (UF) and size exclusion chromatography (SEC) and characterized by transmission electron microscopy (TEM) and Western blot (WB).

View Article and Find Full Text PDF

We address the association of the hydrophobic driving forces in protein folding with the inverse temperature dependence of protein hydration, wherein stabilizing hydration effects strengthen with increasing temperature in a physiological range. All-atom calculations of the free energy of hydration of aqueous deca-alanine conformers, holistically including backbone and side-chain interactions together, show that attractive peptide-solvent interactions and the thermal expansion of the solvent dominate the inverse temperature signatures that have been interpreted traditionally as the hydrophobic stabilization of proteins in aqueous solution. Equivalent calculations on a methane solute are also presented as a benchmark for comparison.

View Article and Find Full Text PDF

Background: Silicosis is an occupational disease that affects workers who inhale silica particles, leading to extensive lung fibrosis and ultimately causing respiratory failure. Mesenchymal stromal cells (MSCs) have been shown to exert therapeutic effects in lung diseases and represent an alternative treatment for silicosis. Recently, it has been suggested that similar effects can be achieved by the therapeutic use of extracellular vesicles (EVs) obtained from MSCs.

View Article and Find Full Text PDF

We present a method that takes advantage of the fluorophore loading dependence of fluorescence nanoparticle tracking (fNTA) to determine the content of specific miRNA targets in extracellular vesicles (EVs) and their stoichiometry across the entire EV population. The method is based on an assay for detecting EV miRNA by hybridization to fluorescently labeled, miRNA-specific molecular beacons encapsulated in cationic lipoplex nanoparticles that fuse non-specifically with negatively charged EVs. To demonstrate the method, we carry out a stoichiometric analysis of miR-21 in EVs released from A549 lung cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma (MM) is a type of cancer that affects special cells in the bone marrow and can be tough to treat because it uses help from its surroundings.
  • Researchers looked at tiny particles called extracellular vesicles (EVs) from MM patients to find markers that could help in diagnosing and treating the disease.
  • They found that a protein called CD44 was higher in the EVs from patients with MM and could help predict how long patients might live, making it an important discovery for improving treatments.
View Article and Find Full Text PDF

Unlabelled: Extracellular vesicles (EV), including exosomes and shed vesicles, have been implicated in intercellular communication; however, their biomarker potential is less clear. Therefore, EVs derived from MCF7 and MCF10A cells were analyzed to identify unique miRNA (miR) profiles that distinguish their origin. One characteristic common to the miR profiles of MCF7 EVs and their parent cells is the high abundance of miR-21, let-7a, miR-100, and miR-125b, and low levels of miR-205.

View Article and Find Full Text PDF

Unlabelled: Connective tissue growth factor (CCN2) drives fibrogenesis in hepatic stellate cells (HSC). Here we show that CCN2 up-regulation in fibrotic or steatotic livers, or in culture-activated or ethanol-treated primary mouse HSC, is associated with a reciprocal down-regulation of microRNA-214 (miR-214). By using protector or reporter assays to investigate the 3'-untranslated region (UTR) of CCN2 mRNA, we found that induction of CCN2 expression in HSC by fibrosis-inducing stimuli was due to reduced expression of miR-214, which otherwise inhibited CCN2 expression by directly binding to the CCN2 3'-UTR.

View Article and Find Full Text PDF

Membrane antigens are critical to the pathogenesis of chronic lymphocytic leukemia (CLL) as they facilitate microenvironment homing, proliferation, and survival. Targeting the CLL membrane and associated signaling patterns is a current focus of therapeutic development. Many tumor membrane targets are simultaneously targeted by humoral immunity, thus forming recognizable immunoglobulin responses.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. The role that extracellular vesicles (EVs), microvesicles and exosomes, released by MM cells have in cell-to-cell communication and signaling in the bone marrow is currently unknown. This paper describes the proteomic content of EVs derived from MM.

View Article and Find Full Text PDF

Despite advances in chemo and immunotherapeutic agents for B chronic lymphocytic leukemia (B-CLL), the undesirable adverse side effects due to non-specific cellular uptake remain to be addressed. We identified anti-CD37 monoclonal antibody immunoliposomes (ILs) as vehicles for targeted delivery to B chronic lymphocytic leukemia cells. To achieve maximal benefits for all patients, a new strategy of dual-ligand immunoliposomes (dILs) was developed.

View Article and Find Full Text PDF

Microvesicles are small membrane-bound particles comprised of exosomes and various-sized extracellular vesicles. These are released by several cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation.

View Article and Find Full Text PDF

Coordination state probabilities for the [Zn(H(2)O)(n)(CH(3)OH)(m)](2+) complex in aqueous methanol solutions are calculated as a function of the bulk solution concentration, and the number of methanol ligands, m = 0, 1, ...

View Article and Find Full Text PDF

Cosolvent hydrophobic preferential interactions with methane in aqueous methanol solutions are evaluated on the basis of the solute excess chemical potential derived from molecular simulations using the quasi-chemical (QC) theory generalization of the potential distribution theorem (PDT). We find that the methane-methanol preferential interaction parameter derived from QC theory quantitatively captures the favorable solvation of methane in methanol solutions in terms of important local solute-solvent (water and methanol) intermolecular interactions within a defined inner shell around the solute, and nonlocal solute interactions with solvent molecules outside this inner shell. Moreover, a unique inner shell can be defined such that the preferential interaction parameter is derived exclusively from the free energy of cavity formation in the aqueous cosolvent solution without the solute, where this cavity corresponds to the specified inner shell, and the mean interaction or binding energy of the solute with solvent molecules outside this inner shell.

View Article and Find Full Text PDF

Acellular hemoglobin (Hb)-based O2 carriers (HBOCs) are being investigated as red blood cell (RBC) substitutes for use in transfusion medicine. However, commercial acellular HBOCs elicit both vasoconstriction and systemic hypertension which hampers their clinical use. In this study, it is hypothesized that encapsulation of Hb inside the aqueous core of liposomes should regulate the rates of NO dioxygenation and O2 release, which should in turn regulate its vasoactivity.

View Article and Find Full Text PDF

The small r variation of the probability density P(r) for end-to-end separations of a -CH(2)CH(3) capped (-OCH(2)CH(2)-)(n) oligomer in water is computed to be closely similar to the CH(4)···CH(4) potential of mean force under the same circumstances. Since the aqueous solution CH(4)···CH(4) potential of mean force is the natural physical definition of a primitive hydrophobic bond, the present result identifies an experimentally accessible circumstance for direct observation of a hydrophobic bond which has not been observed previously because of the low solubility of CH(4) in water. The physical picture is that the soluble chain molecules carry the capping groups into aqueous solution, and permits them to find one another with reasonable frequency.

View Article and Find Full Text PDF

In view of the wide success of molecular quasichemical theory of liquids, this paper develops the soft-cutoff version of that theory. This development allows molecular dynamics simulations to be used for the calculation of solvation free energy, whereas the hard-cutoff version of the theory needs Monte Carlo simulations. This development also shows how fluids composed of molecules with smooth repulsive interactions can be treated analogously to the molecular-field theory of the hard-sphere fluid.

View Article and Find Full Text PDF

The development of high-throughput protein microarrays for rapidly determining antigen-specific T-cell receptor repertoires of diverse T-cell populations can enable comprehensive, broad-based analyses of T-cell responses. Promising applications include medical diagnostics, vaccine development, treatment of autoimmune diseases and detection of potential agents of bioterrorism. In this study, we examined the feasibility of using peptide/major histocompatibility complex (p/MHC) microarrays to selectively capture and enumerate antigen-specific T cells.

View Article and Find Full Text PDF

Intrinsically disordered proteins have a wide variety of important functional roles. However, the relationship between sequence and function in these proteins is significantly different than that for well-folded proteins. In a previous work, we showed that the propensity to be disordered can be recognized based on sequence composition alone.

View Article and Find Full Text PDF

The thermodynamic exclusion of Na+ relative to K+ in potassium channels is examined by calculating the distribution of binding energies for Na+ and K+ in a model of the selectivity filter of the KcsA potassium channel. These distributions are observed to take a surprisingly simple form: Gaussian with a slight positive skewness that is insignificant in the present context. Complications that might be anticipated from these distributions are not problematic here.

View Article and Find Full Text PDF

We simulated the interface between liquid water and a stationary phase of tethered n-C18 alkyl chains at a thermodynamic state of low pressure and water vapor-liquid coexistence. The interfacial water (oxygen atom) density profile so obtained is compared with a precisely defined proximal density of water molecules (oxygen atoms) conditional on the alkyl chain configurations. Though the conventional interfacial density profile takes a traditional monotonic form, the proximal radial distribution of oxygen atoms around a specific methyl (methylene) group closely resembles that for a solitary methane solute in liquid water.

View Article and Find Full Text PDF

Intrinsically disordered proteins are an important class of proteins with unique functions and properties. Here, we have applied a support vector machine (SVM) trained on naturally occurring disordered and ordered proteins to examine the contribution of various parameters (vectors) to recognizing proteins that contain disordered regions. We find that a SVM that incorporates only amino acid composition has a recognition accuracy of 87+/-2%.

View Article and Find Full Text PDF

We studied the pressure-induced folding/unfolding transition of staphylococcal nuclease (SN) over a pressure range of approximately 1-3 kilobars at 25 degrees C by small-angle neutron scattering and molecular dynamics simulations. We find that applying pressure leads to a twofold increase in the radius of gyration derived from the small-angle neutron scattering spectra, and P(r), the pair distance distribution function, broadens and shows a transition from a unimodal to a bimodal distribution as the protein unfolds. The results indicate that the globular structure of SN is retained across the folding/unfolding transition although this structure is less compact and elongated relative to the native structure.

View Article and Find Full Text PDF