Publications by authors named "Michael E Palmer"

Although single genes underlying several evolutionary adaptations have been identified, the genetic basis of complex, polygenic adaptations has been far more challenging to pinpoint. Here we report that the budding yeast Saccharomyces paradoxus has recently evolved resistance to citrinin, a naturally occurring mycotoxin. Applying a genome-wide test for selection on cis-regulation, we identified five genes involved in the citrinin response that are constitutively up-regulated in S.

View Article and Find Full Text PDF

It has long been debated whether natural selection acts primarily upon individual organisms, or whether it also commonly acts upon higher-level entities such as lineages. Two arguments against the effectiveness of long-term selection on lineages have been (i) that long-term evolutionary outcomes will not be sufficiently predictable to support a meaningful long-term fitness and (ii) that short-term selection on organisms will almost always overpower long-term selection. Here, we use a computational model of protein folding and binding called 'lattice proteins'.

View Article and Find Full Text PDF

Mutability as mechanism for rapid adaptation to environmental challenge is an alluringly simple concept whose apotheosis is realized in simple sequence repeats (SSR). Bacterial genomes of several species contain SSRs with a proven role in adaptation to environmental fluctuations. SSRs are hypermutable and generate reversible mutations in localized regions of bacterial genomes, leading to phase variable ON/OFF switches in gene expression.

View Article and Find Full Text PDF

For a lineage to survive over long time periods, it must sometimes change. This has given rise to the term evolvability, meaning the tendency to produce adaptive variation. One lineage may be superior to another in terms of its current standing variation, or it may tend to produce more adaptive variation.

View Article and Find Full Text PDF

Previous studies have shown that temporally fluctuating environments can create indirect selection for modifiers of evolvability. Here, we use a simple computational model to investigate whether spatially varying environments (multiple demes with limited migration among them, and a different, static selective optimum in each) can also create indirect selection for increased evolvability. The answer is surprisingly complicated.

View Article and Find Full Text PDF

After an ancestral population splits into two allopatric populations, different mutations may fix in each. When pairs of mutations are brought together in a hybrid offspring, epistasis may cause reduced fitness. Such pairs are known as Bateson-Dobzhansky-Muller (BDM) incompatibilities.

View Article and Find Full Text PDF

The question of how natural selection affects asexual mutation rates has been considered since the 1930s, yet our understanding continues to deepen. The distribution of mutation rates observed in natural bacteria remains unexplained. It is well known that environmental constancy can favor minimal mutation rates.

View Article and Find Full Text PDF