A diarylethene-based zwitterionic molecule (DZM) is newly synthesized for the development of smart films exhibiting reversible color change and switchable ionic conductivity in response to external light stimuli. This dual molecular building block is constructed through zwitterionic interlocking and strong phase separation between the dendron-shaped aliphatic tails and the diarylethene head. Uniaxial shear coating and molecular self-assembly result in anisotropically oriented nanostructures, which are further solidified through photopolymerization.
View Article and Find Full Text PDFMagnetic fields have been used to uniformly align the lyotropic chiral nematic (cholesteric) liquid crystalline (LC) phase of biopolymers to a global orientation and optical appearance. Here, we demonstrate that, in contrast, weak and patterned magnetic field gradients can create a complex optical appearance with the variable spatial local organization of needle-like magnetically decorated cellulose nanocrystals. The formation of optically patterned thin films with left- and right-handed chiral and achiral regions is observed and related to local magnetic gradient-driven vortices during LC suspension flow.
View Article and Find Full Text PDFFor the construction of hierarchical superstructures with biaxial anisotropic absorption, a newly synthesized diacetylene-functionalized bipyridinium is self-assembled to use an electron-accepting host for capturing and arranging guests. The formation of the donor-acceptor complex triggers an intermolecular charge transfer, leading to chromophore activation. Polarization-dependent multichroic thin films are prepared through a sequential process of single-coating, self-assembly, and topochemical polymerization of host-guest chromophores.
View Article and Find Full Text PDFThe optical properties of light-absorbing materials in optical shutter devices are critical to the use of such platforms for optical applications. We demonstrate switchable optical properties of dyes and nanoparticles in liquid-based electrowetting-on-dielectric (EWOD) devices. Our work uses narrow-band-absorbing dyes and nanoparticles, which are appealing for spectral-filtering applications targeting specific wavelengths while maintaining device transparency at other wavelengths.
View Article and Find Full Text PDFUltra-thin films of low damping ferromagnetic insulators with perpendicular magnetic anisotropy have been identified as critical to advancing spin-based electronics by significantly reducing the threshold for current-induced magnetization switching while enabling new types of hybrid structures or devices. Here, we have developed a new class of ultra-thin spinel structure LiAlFeO (LAFO) films on MgGaO (MGO) substrates with: 1) perpendicular magnetic anisotropy; 2) low magnetic damping and 3) the absence of degraded or magnetic dead layers. These films have been integrated with epitaxial Pt spin source layers to demonstrate record low magnetization switching currents and high spin-orbit torque efficiencies.
View Article and Find Full Text PDFThe outspread of bacterial pathogens causing severe infections and spreading rapidly, especially among hospitalized patients, is worrying and represents a global public health issue. Current disinfection techniques are becoming insufficient to counteract the spread of these pathogens because they carry multiple antibiotic-resistance genes. For this reason, a constant need exists for new technological solutions that rely on physical methods rather than chemicals.
View Article and Find Full Text PDFCholesteric liquid crystals (CLC) are molecules that can self-assemble into helicoidal superstructures exhibiting circularly polarized reflection. The facile self-assembly and resulting optical properties makes CLCs a promising technology for an array of industrial applications, including reflective displays, tunable mirror-less lasers, optical storage, tunable color filters, and smart windows. The helicoidal structure of CLC can be stabilized via in situ photopolymerization of liquid crystal monomers in a CLC mixture, resulting in polymer-stabilized CLCs (PSCLCs).
View Article and Find Full Text PDFHypothesis: Nanoparticles of various shapes and sizes can affect the optical properties and blue phase (BP) stabilization of BP liquid crystals (BPLCs). This is because nanoparticles, which are more compatible with the LC host, can be dispersed in both the double twist cylinder (DTC) and disclination defects in BPLCs.
Experiments: This study presents the first systematic study of the use of CdSe nanoparticles having various sizes and shapes (spheres, tetrapods and nanoplatelets) to stabilize BPLCs.
Inverse vulcanization techniques are used to fabricate thermodynamically stable, sulfur polymers. Sulfur-based polymers exhibit higher refractive indices and improved transparency in the mid-wave infrared region compared with most organic polymers. Herein, the postsynthetic modification of sulfur polymers created via inverse vulcanization to generate novel, inorganic/organic photoresists is discussed.
View Article and Find Full Text PDFLight manipulation strategies of nature have fascinated humans for centuries. In particular, structural colors are of considerable interest due to their ability to control the interaction between light and matter. Here, wrinkled photonic crystal papers (PCPs) are fabricated to demonstrate the consistent reflection of colors regardless of viewing angles.
View Article and Find Full Text PDFFor the development of optically encryptable smart glass that can control the molecular alignment of liquid crystals (LCs), an azobenzene-based reactive molecule (ARM) capable of photoisomerization is newly designed and synthesized. Photo-triggered LC-commandable smart glasses are successfully constructed by the surface functionalization technique using 3-aminopropyltriethoxysilane (APTMS) coupling agent and an ARM. The surface functionalization with the ARM is verified by spectroscopic analysis and various observations including changes in the wettability and surface morphology.
View Article and Find Full Text PDFBlue phase liquid crystals (BPLCs) composed of double-twisted cholesteric helices are promising materials for use in next-generation displays, optical components, and photonics applications. However, BPLCs are only observed in a narrow temperature range of 0.5-3 °C and must be stabilized with a polymer network.
View Article and Find Full Text PDFA self-crosslinkable side-chain liquid crystal polysiloxane containing cyanostilbene (Si-CSM) was newly synthesized for the development of a new generation of flexible optical paints. The photoisomerization of the cyanostilbene moiety at the molecular level was transferred and amplified to the phase transition of Si-CSM, resulting in changes in the macroscopic optical properties of the Si-CSM thin film. The self-crosslinking reaction between Si-H groups in the Si-CSM polymer backbone caused the self-crosslinked Si-CSM thin film to be very elastic and both thermally and chemically stable.
View Article and Find Full Text PDFThe classical "chair-twist boat-boat" conformational dynamics (CD) of cyclohexane is thermally activated. Here we report on the photoinduced/azobenzene-assisted CD of bilaterally fused cyclohexane moieties contributing to large photomechanical response of cross-linked azobenzene-functionalized polyimides (X-azoPI), based on 1,2,4,5-cyclohexane-tetracarboxylic-dianhydride (CHDA), exhibiting a photobending angle and photogenerated stress, up to ∼90° and 370 kPa, respectively. In contrast, X-azoPI containing planar pyromellitimide (PMDI) or cage-like bicyclo[2.
View Article and Find Full Text PDFSelf-organized functional soft materials, enabled by specific chemical architectures, are currently attracting tremendous attention because of their stimuli-responsive attributes and applications in advanced technological devices. A novel axially chiral molecular switch containing two azo linkages and six terminal alkyl chains on two elongated rod-shaped wings, that exhibits superior solubility, high helical twisting power, and reversible photoisomerization in an achiral liquid crystal host, is synthesized and utilized in the development of a photoresponsive, self-organized helical superstructure, that is, cholesteric liquid crystal (CLC). The planar CLC adopts a standing helix (SH) configuration because of surface alignment layers on the substrates.
View Article and Find Full Text PDFPlanar cholesteric liquid crystals (CLCs) are well known for having vibrant reflective coloration that is associated with the handedness and the pitch length of the helicoidal twist of the liquid crystalline molecules. If one observes these films at oblique angles, the reflected colors blue-shift with increasing angles from normal. On the other hand, uniform lying helix (ULH) CLCs, where the helicoidal axis lies in the plane of the substrate, are well-known but are not typically associated with vibrant colors.
View Article and Find Full Text PDFAnisotropy in a crystal structure can lead to large orientation-dependent variations of mechanical, optical, and electronic properties. Material orientation control can thus provide a handle to manipulate properties. Here, a novel sputtering approach for 2D materials enables growth of ultrathin (2.
View Article and Find Full Text PDFIt has previously been shown that for polymer-stabilized cholesteric liquid crystals (PSCLCs) with negative dielectric anisotropy, the position and bandwidth of the selective reflection notch can be controlled by a direct-current (DC) electric field. The field-induced deformation of the polymer network that stabilizes the devices is mediated by ionic charges trapped in or near the polymer. A unique and reversible electro-optic response is reported here for relatively thin films (≤5 μm).
View Article and Find Full Text PDFVisible-light-driven molecular switches endowing reversible modulation of the functionalities of self-organized soft materials are currently highly sought after for fundamental scientific studies and technological applications. Reported herein are the design and synthesis of two novel halogen bond donor based chiral molecular switches that exhibit reversible photoisomerization upon exposure to visible light of different wavelengths. These chiral molecular switches induce photoresponsive helical superstructures, that is, cholesteric liquid crystals, when doped into the commercially available room-temperature achiral liquid crystal host 5CB, which also acts as a halogen-bond acceptor.
View Article and Find Full Text PDFParametric resonance is a complex phenomenon that touches many aspects of scientific and technical society, but is still not well understood because of the intensive calculations required to describe the behavior. Thus the importance of developing simple mathematical approaches to describe parametric resonance cannot be overstated. Here a consistent theory of the parametric resonance of a harmonic oscillator under any periodic frequency modulation is constructed.
View Article and Find Full Text PDFLight-induced phenomena occurring in nature and in synthetic materials are fascinating and have been exploited for technological applications. Here visible-light-induced formation of a helical superstructure is reported, i.e.
View Article and Find Full Text PDFState-of-the-art compact antennas rely on electromagnetic wave resonance, which leads to antenna sizes that are comparable to the electromagnetic wavelength. As a result, antennas typically have a size greater than one-tenth of the wavelength, and further miniaturization of antennas has been an open challenge for decades. Here we report on acoustically actuated nanomechanical magnetoelectric (ME) antennas with a suspended ferromagnetic/piezoelectric thin-film heterostructure.
View Article and Find Full Text PDFLow-loss magnetization dynamics and strong magnetoelastic coupling are generally mutually exclusive properties due to opposing dependencies on spin-orbit interactions. So far, the lack of low-damping, magnetostrictive ferrite films has hindered the development of power-efficient magnetoelectric and acoustic spintronic devices. Here, magnetically soft epitaxial spinel NiZnAl-ferrite thin films with an unusually low Gilbert damping parameter (<3 × 10 ), as well as strong magnetoelastic coupling evidenced by a giant strain-induced anisotropy field (≈1 T) and a sizable magnetostriction coefficient (≈10 ppm), are reported.
View Article and Find Full Text PDFDynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers.
View Article and Find Full Text PDF