Publications by authors named "Michael E Hasselmo"

In keeping with the historical focus of this special issue of Hippocampus, this paper reviews the history of my development of the SPEAR model. The SPEAR model proposes that separate phases of encoding and retrieval (SPEAR) allow effective storage of multiple overlapping associative memories in the hippocampal formation and other cortical structures. The separate phases for encoding and retrieval are proposed to occur within different phases of theta rhythm with a cycle time on the order of 125 ms.

View Article and Find Full Text PDF

Disorientation is an early symptom of dementia, suggesting impairments in neural circuits responsible for head direction signaling. The anterodorsal thalamic nucleus (ADn) exhibits early and selective vulnerability to pathological misfolded forms of tau (ptau), a major hallmark of Alzheimer's disease and ageing. The ADn contains a high density of head direction (HD) cells; their disruption may contribute to spatial disorientation.

View Article and Find Full Text PDF

The hippocampus is a higher-order brain structure responsible for encoding new episodic memories and predicting future outcomes. In the absence of external stimuli, neurons in the hippocampus track elapsed time, distance traveled, and other idiothetic variables. To this day, the exact determinants of idiothetic representations during free navigation remain unclear.

View Article and Find Full Text PDF

Recent experimental studies have discovered diverse spatial properties, such as head direction tuning and egocentric tuning, of neurons in the postrhinal cortex (POR) and revealed how the POR spatial representation is distinct from the retrosplenial cortex (RSC). However, how these spatial properties of POR neurons emerge is unknown, and the cause of distinct cortical spatial representations is also unclear. Here, we build a learning model of POR based on the pathway from the superior colliculus (SC) that has been shown to have motion processing within the visual input.

View Article and Find Full Text PDF

Complex sensory information arrives in the brain from an animal's first-person ('egocentric') perspective. However, animals can efficiently navigate as if referencing map-like ('allocentric') representations. The postrhinal (POR) and retrosplenial (RSC) cortices are thought to mediate between sensory input and internal maps, combining egocentric representations of physical cues with allocentric head direction (HD) information.

View Article and Find Full Text PDF

The hippocampus and medial entorhinal cortex (MEC) form a cognitive map that facilitates spatial navigation. As part of this map, MEC grid cells fire in a repeating hexagonal pattern across an environment. This grid pattern relies on inputs from the medial septum (MS).

View Article and Find Full Text PDF
Article Synopsis
  • The hippocampus and medial entorhinal cortex (MEC) create a cognitive map for spatial navigation, with grid cells in the MEC firing in a distinct hexagonal pattern.* -
  • The medial septum (MS) and its GABAergic neurons play a crucial role in generating theta rhythm oscillations in this network, but their specific impact on grid cell function was unclear.* -
  • Inhibiting MS-GABAergic neurons disrupted both the spatial pattern and temporal coding of grid cells, though longer recovery from inhibition allowed some restoration of function, highlighting the importance of these neurons for grid cell activity.*
View Article and Find Full Text PDF

Analysis of neuronal activity in the hippocampus of behaving animals has revealed cells acting as 'Time Cells', which exhibit selective spiking patterns at specific time intervals since a triggering event, and 'Distance Cells', which encode the traversal of specific distances. Other neurons exhibit a combination of these features, alongside place selectivity. This study aims to investigate how the task performed by animals during recording sessions influences the formation of these representations.

View Article and Find Full Text PDF

Humans and other animals are able to quickly generalize latent dynamics of spatiotemporal sequences, often from a minimal number of previous experiences. Additionally, internal representations of external stimuli must remain stable, even in the presence of sensory noise, in order to be useful for informing behavior. In contrast, typical machine learning approaches require many thousands of samples, and generalize poorly to unexperienced examples, or fail completely to predict at long timescales.

View Article and Find Full Text PDF

Hippocampal CA1 neurons generate single spikes and stereotyped bursts of spikes. However, it is unclear how individual neurons dynamically switch between these output modes and whether these two spiking outputs relay distinct information. We performed extracellular recordings in spatially navigating rats and cellular voltage imaging and optogenetics in awake mice.

View Article and Find Full Text PDF

Encoding an event in memory requires neural activity to represent multiple dimensions of behavioral experience in space and time. Recent experiments have explored the influence of neural dynamics regulated by the medial septum on the functional encoding of space and time by neurons in the hippocampus and associated structures. This review addresses these dynamics, focusing on the role of theta rhythm, the differential effects of septal inactivation and activation on the functional coding of space and time by individual neurons, and the influence on phase coding that appears as phase precession.

View Article and Find Full Text PDF

The use of spatial maps to navigate through the world requires a complex ongoing transformation of egocentric views of the environment into position within the allocentric map. Recent research has discovered neurons in retrosplenial cortex and other structures that could mediate the transformation from egocentric views to allocentric views. These egocentric boundary cells respond to the egocentric direction and distance of barriers relative to an animal's point of view.

View Article and Find Full Text PDF

This paper reviews the recent experimental finding that neurons in behaving rodents show egocentric coding of the environment in a number of structures associated with the hippocampus. Many animals generating behavior on the basis of sensory input must deal with the transformation of coordinates from the egocentric position of sensory input relative to the animal, into an allocentric framework concerning the position of multiple goals and objects relative to each other in the environment. Neurons in retrosplenial cortex show egocentric coding of the position of boundaries in relation to an animal.

View Article and Find Full Text PDF

The dentate gyrus (DG) of hippocampus is hypothesized to act as a pattern separator that distinguishes between similar input patterns during memory formation and retrieval. Sparse ensembles of DG cells associated with learning and memory, i.e.

View Article and Find Full Text PDF

The Weber-Fechner law proposes that our perceived sensory input increases with physical input on a logarithmic scale. Hippocampal 'time cells' carry a record of recent experience by firing sequentially during a circumscribed period of time after a triggering stimulus. Different cells have 'time fields' at different delays up to at least tens of seconds.

View Article and Find Full Text PDF

The review by Slotnick is valuable for raising the important question of how much the hippocampal activity induced by novel stimuli is due to mechanisms for encoding into long-term memory, and how much is due to working memory. Slotnick's paper implicitly defines working memory as being equivalent to sustained activation during the late delay period. In this commentary, we suggest that cognitive neuroscientists should consider a broader range of cellular and synaptic mechanisms for maintaining information in working memory.

View Article and Find Full Text PDF

Cholinergic projection neurons in the medial septum and diagonal band of Broca are the major source of cholinergic modulation of hippocampal circuit functions that support neural coding of location and running speed. Changes in cholinergic modulation are known to correlate with changes in brain states, cognitive functions, and behavior. However, whether cholinergic modulation can change fast enough to serve as a potential speed signal in hippocampal and parahippocampal cortices and whether the temporal dynamics in such a signal depend on the presence of visual cues remain unknown.

View Article and Find Full Text PDF

Episodic memory binds the spatial and temporal relationships between the elements of experience. The hippocampus encodes space through place cells that fire at specific spatial locations. Similarly, time cells fire sequentially at specific time points within a temporally organized experience.

View Article and Find Full Text PDF

Optogenetic manipulation of hippocampal circuitry is an important tool for investigating learning . Numerous approaches to pulse design have been employed to elicit desirable circuit and behavioral outcomes. Here, we systematically test the outcome of different single-pulse waveforms in a rate-based model of hippocampal memory function at the level of mnemonic replay extension and synaptic weight formation in CA3 and CA1.

View Article and Find Full Text PDF

Rats readily switch between foraging and more complex navigational behaviors such as pursuit of other rats or prey. These tasks require vastly different tracking of multiple behaviorally significant variables including self-motion state. To explore whether navigational context modulates self-motion tracking, we examined self-motion tuning in posterior parietal cortex neurons during foraging versus visual target pursuit.

View Article and Find Full Text PDF

The retrosplenial cortex (RSC) is an area interconnected with regions of the brain that display spatial correlates. Neurons in connected regions may encode an animal's position in the environment and location or proximity to objects or boundaries. RSC has also been shown to be important for spatial memory, such as tracking distance from and between landmarks, contextual information, and orientation within an environment.

View Article and Find Full Text PDF

The ability to use symbols is a defining feature of human intelligence. However, neuroscience has yet to explain the fundamental neural circuit mechanisms for flexibly representing and manipulating abstract concepts. This article will review the research on neural models for symbolic processing.

View Article and Find Full Text PDF

While memories are often thought of as flashbacks to a previous experience, they do not simply conserve veridical representations of the past but must continually integrate new information to ensure survival in dynamic environments. Therefore, 'drift' in neural firing patterns, typically construed as disruptive 'instability' or an undesirable consequence of noise, may actually be useful for updating memories. In our view, continual modifications in memory representations reconcile classical theories of stable memory traces with neural drift.

View Article and Find Full Text PDF

Neuronal representations of spatial location and movement speed in the medial entorhinal cortex during the 'active' theta state of the brain are important for memory-guided navigation and rely on visual inputs. However, little is known about how visual inputs change neural dynamics as a function of running speed and time. By manipulating visual inputs in mice, we demonstrate that changes in spatial stability of grid cell firing correlate with changes in a proposed speed signal by local field potential theta frequency.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7uc0rq90sb63d2ji4vb5vp805bmsst3f): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once