Publications by authors named "Michael E Flatte"

Hexagonal boron nitride (h-BN) hosts pure single-photon emitters that have shown evidence of optically detected electronic spin dynamics. However, the electrical and chemical structures of these optically addressable spins are unknown, and the nature of their spin-optical interactions remains mysterious. Here, we use time-domain optical and microwave experiments to characterize a single emitter in h-BN exhibiting room temperature optically detected magnetic resonance.

View Article and Find Full Text PDF

A cavity-magnonic system composed of a superconducting microwave resonator coupled to a magnon mode hosted by the organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]) is demonstrated. This work is motivated by the challenge of scalably integrating a low-damping magnetic system with planar superconducting circuits. V[TCNE] has ultra-low intrinsic damping, can be grown at low processing temperatures on arbitrary substrates, and can be patterned via electron beam lithography.

View Article and Find Full Text PDF

Controlled interaction between localized and delocalized solid-state spin systems offers a compelling platform for on-chip quantum information processing with quantum spintronics. Hybrid quantum systems (HQSs) of localized nitrogen-vacancy (NV) centers in diamond and delocalized magnon modes in ferrimagnets-systems with naturally commensurate energies-have recently attracted significant attention, especially for interconnecting isolated spin qubits at length-scales far beyond those set by the dipolar coupling. However, despite extensive theoretical efforts, there is a lack of experimental characterization of the magnon-mediated interaction between NV centers, which is necessary to develop such hybrid quantum architectures.

View Article and Find Full Text PDF

Theoretical calculations predict the anisotropic dissipationless circulating current induced by a spin defect in a two-dimensional electron gas. The shape and spatial extent of these dissipationless circulating currents depend dramatically on the relative strengths of spin-orbit fields with differing spatial symmetry, offering the potential to use an electric gate to manipulate nanoscale magnetic fields and couple magnetic defects. The spatial structure of the magnetic field produced by this current is calculated and provides a direct way to measure the spin-orbit fields of the host, as well as the defect spin orientation, e.

View Article and Find Full Text PDF

Materials that simultaneously exhibit permanent porosity and high-temperature magnetic order could lead to advances in fundamental physics and numerous emerging technologies. Herein, we show that the archetypal molecule-based magnet and magnonic material V(TCNE) (TCNE = tetracyanoethylene) can be desolvated to generate a room-temperature microporous magnet. The solution-phase reaction of V(CO) with TCNE yields V(TCNE)·0.

View Article and Find Full Text PDF

Copper-doped zinc sulfide (ZnS:Cu) exhibits down-conversion luminescence in the UV, visible, and IR regions of the electromagnetic spectrum; the visible red, green, and blue emission is referred to as R-Cu, G-Cu, and B-Cu, respectively. The sub-bandgap emission arises from optical transitions between localized electronic states created by point defects, making ZnS:Cu a prolific phosphor material and an intriguing candidate material for quantum information science, where point defects excel as single-photon sources and spin qubits. Colloidal nanocrystals (NCs) of ZnS:Cu are particularly interesting as hosts for the creation, isolation, and measurement of quantum defects, since their size, composition, and surface chemistry can be precisely tailored for biosensing and optoelectronic applications.

View Article and Find Full Text PDF

Time-resolved terahertz (THz) spectroscopy is a powerful technique for the determination of charge transport properties in photoexcited semiconductors. However, the relatively long wavelengths of THz radiation and the diffraction limit imposed by optical imaging systems reduce the applicability of THz spectroscopy to large samples with dimensions in the millimeter to centimeter range. Exploiting THz near-field spectroscopy, we present the first time-resolved THz measurements on a single exfoliated 2D nanolayered crystal of a transition metal dichalcogenide (WS).

View Article and Find Full Text PDF

Thermoelectric modules are a promising approach to energy harvesting and efficient cooling. In addition to the longitudinal Seebeck effect, transverse devices utilizing the anomalous Nernst effect (ANE) have recently attracted interest. For high conversion efficiency, it is required that the material have a large ANE thermoelectric power and low electrical resistance, which lead to the conductivity of the ANE.

View Article and Find Full Text PDF

The chiral anomaly is the predicted breakdown of chiral symmetry in a Weyl semimetal with monopoles of opposite chirality when an electric field is applied parallel to a magnetic field. It occurs because of charge pumping between monopoles of opposite chirality. Experimental observation of this fundamental effect is plagued by concerns about the current pathways.

View Article and Find Full Text PDF

We report scanning tunneling microscopy (STM) studies of individual adatoms deposited on an InSb(110) surface. The adatoms can be reproducibly dropped off from the STM tip by voltage pulses, and impact tunneling into the surface by up to ∼100×. The spatial extent and magnitude of the tunneling effect are widely tunable by imaging conditions such as bias voltage, set current and photoillumination.

View Article and Find Full Text PDF

We predict strong, dynamical effects in the dc magnetoresistance of current flowing from a spin-polarized electrical contact through a magnetic dopant in a nonmagnetic host. Using the stochastic Liouville formalism we calculate clearly defined resonances in the dc magnetoresistance when the applied magnetic field matches the exchange interaction with a nearby spin. At these resonances spin precession in the applied magnetic field is canceled by spin evolution in the exchange field, preserving a dynamic bottleneck for spin transport through the dopant.

View Article and Find Full Text PDF

Flexible and wearable devices are among the upcoming trends in the opto-electronics market. Nevertheless, bendable devices should ensure the same efficiency and stability as their rigid analogs. It is well-known that the energy barriers between the metal Fermi energy and the molecular levels of organic semiconductors devoted to charge transport are key parameters in the performance of organic-based electronic devices.

View Article and Find Full Text PDF

We investigate the electronic and transport properties of topological and nontopological InAs_{0.85}Bi_{0.15} quantum dots (QDs) described by a ∼30  meV gapped Bernevig-Hughes-Zhang (BHZ) model with cylindrical confinement, i.

View Article and Find Full Text PDF

There are conflicting reports in the literature about the presence of room temperature conductivity in poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA), a redox active polymer with radical groups pendent to an insulating backbone. To understand the variability in the findings across the literature and synthetic methods, we prepared PTMA using three living methods - anionic, ATRP and RAFT polymerization. We find that all three synthetic methods produce PTMA with radical yields of 70 - 80%, controlled molecular weight, and low dispersity.

View Article and Find Full Text PDF

Two-dimensional materials provide a unique platform to explore the full potential of magnetic proximity-driven phenomena, which can be further used for applications in next-generation spintronic devices. Of particular interest is to understand and control spin currents in graphene by the magnetic exchange field of a nearby ferromagnetic material in graphene-ferromagnetic-insulator (FMI) heterostructures. Here, we present the experimental study showing the strong modulation of spin currents in graphene layers by controlling the direction of the exchange field due to FMI magnetization.

View Article and Find Full Text PDF

We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake.

View Article and Find Full Text PDF

Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer.

View Article and Find Full Text PDF

Intrinsic spin Hall conductivities are calculated for strong spin-orbit Bi(1-x)Sb(x) semimetals, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 (ℏ/e)(Ω  cm)^{-1} for bismuth to 96 (ℏ/e)(Ω  cm)^{-1} for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi(0.

View Article and Find Full Text PDF

A theory is developed for the Faraday rotation of light from a monolayer of charged magnetic nanoparticles at an electrified liquid-liquid interface. The polarization fields of neighboring nanoparticles enhance the Faraday rotation. At such interfaces, and for realistic sizes and charges of nanoparticles, their adsorption-desorption can be controlled with a voltage variation<1 V, providing electrovariable Faraday rotation.

View Article and Find Full Text PDF

We experimentally demonstrate that the spin-orbit interaction can be utilized for direct electric-field tuning of the propagation of spin waves in a single-crystal yttrium iron garnet magnonic waveguide. Magnetoelectric coupling not due to the spin-orbit interaction and, hence, an order of magnitude weaker leads to electric-field modification of the spin-wave velocity for waveguide geometries where the spin-orbit interaction will not contribute. A theory of the phase shift, validated by the experiment data, shows that, in the exchange spin wave regime, this electric tuning can have high efficiency.

View Article and Find Full Text PDF

Magnetic and spin-based technologies for data storage and processing provide unique challenges for information transduction to light because of magnetic metals' optical loss, and the inefficiency and resistivity of semiconductor spin-based emitters at room temperature. Transduction between magnetic and optical information in typical organic semiconductors poses additional challenges, as the spin-orbit interaction is weak and spin injection from magnetic electrodes has been limited to low temperature and low polarization efficiency. Here we demonstrate room temperature information transduction between a magnet and an organic light-emitting diode that does not require electrical current, based on control via the magnet's remanent field of the exciton recombination process in the organic semiconductor.

View Article and Find Full Text PDF

Lanthanides are vital components in lighting, imaging technologies and future quantum memory applications owing to their narrow optical transitions and long spin coherence times. Recently, diamond has become a pre-eminent platform for the realisation of many experiments in quantum information science. Here we demonstrate a promising approach to incorporate Eu ions into diamond, providing a means to harness the exceptional characteristics of both lanthanides and diamond in a single material.

View Article and Find Full Text PDF

The sensitive dependence of a semiconductor's electronic, optical and magnetic properties on dopants has provided an extensive range of tunable phenomena to explore and apply to devices. Recently it has become possible to move past the tunable properties of an ensemble of dopants to identify the effects of a solitary dopant on commercial device performance as well as locally on the fundamental properties of a semiconductor. New applications that require the discrete character of a single dopant, such as single-spin devices in the area of quantum information or single-dopant transistors, demand a further focus on the properties of a specific dopant.

View Article and Find Full Text PDF

We find a dramatic enhancement of electron propagation along a narrow range of real-space angles from an isotropic source in a two-dimensional quantum well made from a zinc-blende semiconductor. This "electron-beam" formation is caused by the interplay between spin-orbit interaction originating from a perpendicular electric field to the quantum well and the intrinsic spin-orbit field of the zinc-blende crystal lattice in a quantum well, in situations where the two fields are different in strength but of the same order of magnitude. Beam formation is associated with caustics and can be described semiclassically using a stationary phase analysis.

View Article and Find Full Text PDF