Publications by authors named "Michael E Feigin"

Human tumors are characterized by extensive intratumoral transcriptional variability within the cancer cell and stromal compartments. This variation drives phenotypic heterogeneity, producing cell states with differential pro- and anti-tumorigenic properties. While bulk RNA sequencing cannot achieve cell-type-specific transcriptional granularity, single-cell sequencing has permitted an unprecedented view of these cell states.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited effective treatment options, potentiating the importance of uncovering novel drug targets. Here, we target cleavage and polyadenylation specificity factor 3 (CPSF3), the 3' endonuclease that catalyzes mRNA cleavage during polyadenylation and histone mRNA processing. We find that is highly expressed in PDAC and is associated with poor prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • This research explores the relationship between benzodiazepine (BZD) use and survival outcomes in pancreatic cancer patients, focusing on lorazepam (LOR) and alprazolam (ALP).
  • The study employs various experimental techniques to assess how these medications impact the tumor microenvironment and cancer-associated fibroblast (CAF) signaling.
  • Results indicate that LOR is linked to worse patient survival and increased tumor desmoplasia and inflammation, while ALP is associated with better progression-free survival outcomes in patients undergoing chemotherapy.
View Article and Find Full Text PDF

Melanoma risk is 30 times higher in people with lightly pigmented skin versus darkly pigmented skin. Using primary human melanocytes representing the full human skin pigment continuum and preclinical melanoma models, we show that cell-intrinsic differences between dark and light melanocytes regulate melanocyte proliferative capacity and susceptibility to malignant transformation, independent of melanin and ultraviolet exposure. These differences result from dihydroxyphenylalanine (DOPA), a melanin precursor synthesized at higher levels in melanocytes from darkly pigmented skin.

View Article and Find Full Text PDF

Unlabelled: Cyclin D1 (CCND1) is a critical regulator of cell proliferation and its overexpression has been linked to the development and progression of several malignancies. CCND1 overexpression is recognized as a major mechanism of therapy resistance in several cancers; tumors that rely on CCND1 overexpression to evade cancer therapy are extremely sensitive to its ablation. Therefore, targeting CCND1 is a promising strategy for preventing tumor progression and combating therapy resistance in cancer patients.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with a poor prognosis. The functional consequences of common genetic aberrations and their roles in treatment strategies have been extensively reviewed. In addition to these genomic aberrations, consideration of non-genetic drivers of altered oncogene expression is essential to account for the diversity in PDAC phenotypes.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are the most common class of therapeutic targets, accounting for ~35% of all FDA-approved drugs. Cancer patients receive numerous medications not only to combat cancer but also to alleviate pain, nausea, and anxiety, many of which target GPCRs. Emerging evidence has implicated GPCRs as drivers of cancer progression, therapeutic resistance, and metastasis.

View Article and Find Full Text PDF

Alternative polyadenylation (APA) is a gene regulatory process that dictates mRNA 3'-UTR length, resulting in changes in mRNA stability and localization. APA is frequently disrupted in cancer and promotes tumorigenesis through altered expression of oncogenes and tumor suppressors. Pan-cancer analyses have revealed common APA events across the tumor landscape; however, little is known about tumor type-specific alterations that may uncover novel events and vulnerabilities.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs), the largest family of targets for approved drugs, are rarely targeted for cancer treatment, except for certain endocrine and hormone-responsive tumors. Limited knowledge regarding GPCR expression in cancer cells likely has contributed to this lack of use of GPCR-targeted drugs as cancer therapeutics. We thus undertook GPCRomic studies to define the expression of endoGPCRs (which respond to endogenous molecules such as hormones, neurotransmitters and metabolites) in multiple types of cancer cells.

View Article and Find Full Text PDF

The contributions of coding mutations to tumorigenesis are relatively well known; however, little is known about somatic alterations in noncoding DNA. Here we describe GECCO (Genomic Enrichment Computational Clustering Operation) to analyze somatic noncoding alterations in 308 pancreatic ductal adenocarcinomas (PDAs) and identify commonly mutated regulatory regions. We find recurrent noncoding mutations to be enriched in PDA pathways, including axon guidance and cell adhesion, and newly identified processes, including transcription and homeobox genes.

View Article and Find Full Text PDF

The ability to faithfully model complex processes lies at the heart of experimental biology. Although a reductionist approach necessarily reduces this complexity, it is nevertheless required for untangling the contributions and interactions of the various system components. It has long been appreciated that cancer is a complex process that involves positive and negative interactions between tumor cells, normal host tissue, and the associated cells of the tumor microenvironment.

View Article and Find Full Text PDF

The cell polarity protein scribble (SCRIB) is a crucial regulator of polarization, cell migration and tumorigenesis. Whereas SCRIB is known to regulate early stages of mouse mammary gland development, its function in the adult gland is not known. Using an inducible RNA interference (RNAi) mouse model for downregulating SCRIB expression, we report an unexpected role for SCRIB as a positive regulator of cell proliferation during pregnancy-associated mammary alveologenesis.

View Article and Find Full Text PDF

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues.

View Article and Find Full Text PDF

Scribble (SCRIB) localizes to cell-cell junctions and regulates establishment of epithelial cell polarity. Loss of expression of SCRIB functions as a tumor suppressor in Drosophila and mammals; conversely, overexpression of SCRIB promotes epithelial differentiation in mammals. Here, we report that SCRIB is frequently amplified, mRNA overexpressed, and protein is mislocalized from cell-cell junctions in human breast cancers.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) accounts for 20% of breast cancer in women and lacks an effective targeted therapy. Therefore, finding common vulnerabilities in these tumors represents an opportunity for more effective treatment. Despite the growing appreciation of G-protein-coupled receptor (GPCR)-mediated signaling in cancer pathogenesis, very little is known about the role GPCRs play in TNBC.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) mediate numerous physiological processes and represent the targets for a vast array of therapeutics for diseases ranging from depression to hypertension to reflux. Despite the recognition that GPCRs can act as oncogenes and tumour suppressors by regulating oncogenic signalling networks, few drugs targeting GPCRs are utilized in cancer therapy. Recent large-scale genome-wide analyses of multiple human tumours have uncovered novel GPCRs altered in cancer.

View Article and Find Full Text PDF

Changes in expression and localization of proteins that regulate cell and tissue polarity are frequently observed in carcinoma. However, the mechanisms by which changes in cell polarity proteins regulate carcinoma progression are not well understood. Here, we report that loss of polarity protein expression in epithelial cells primes them for cooperation with oncogenes or changes in tissue microenvironment to promote invasive behavior.

View Article and Find Full Text PDF

The epithelial cells of multicellular organisms form highly organized tissues specialized for the tasks of protection, secretion, and absorption, all of which require tight regulation of the core processes of cell polarity and tissue architecture. Disruption of these core processes is a critical feature of epithelial tumors. Cell polarity and tissue architecture are intimately linked, as proteins controlling cell shape are also responsible for proper localization and assembly of cell-cell junctions and three-dimensional tissue organization.

View Article and Find Full Text PDF

The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion.

View Article and Find Full Text PDF

The Wnt-beta-catenin canonical signaling pathway is crucial for normal embryonic development, and aberrant expression of components of this pathway results in oncogenesis. Upon scanning for the mitogen-activated protein kinase (MAPK) pathways that might intersect with the canonical Wnt-beta-catenin signaling pathway in response to Wnt3a, we observed a strong activation of p38 MAPK in mouse F9 teratocarcinoma cells. Wnt3a-induced p38 MAPK activation was sensitive to siRNAs against Galpha(q) or Galpha(s), but not against either Galpha(o) or Galpha(11).

View Article and Find Full Text PDF

The Wnt/beta-catenin signaling pathway controls key aspects of embryonic development and adult tissue homeostasis, including the formation and maintenance of bone. Recently, mutations in the OSTM1 gene were found to be the cause of severe autosomal recessive osteopetrosis in both the mouse and humans. This disorder is characterized by increased bone mass resulting from a defect in osteoclast maturation.

View Article and Find Full Text PDF

In Drosophila, activation of Jun N-terminal Kinase (JNK) mediated by Frizzled and Dishevelled leads to signaling linked to planar cell polarity. A biochemical delineation of WNT-JNK planar cell polarity was sought in mammalian cells, making use of totipotent mouse F9 teratocarcinoma cells that respond to WNT3a via Frizzled-1. The canonical WNT-beta-catenin signaling pathway requires both G alpha o and G alpha q heterotrimeric G-proteins, whereas we show that WNT-JNK signaling requires only G alpha o protein.

View Article and Find Full Text PDF

The Wnt-beta-catenin pathway controls numerous cellular processes, including differentiation, cell-fate decisions and dorsal-ventral polarity in the developing embryo. Heterotrimeric G-proteins are essential for Wnt signaling, and regulator of G-protein signaling (RGS) proteins are known to act at the level of G-proteins. The functional role of RGS proteins in the Wnt-beta-catenin pathway was investigated in mouse F9 embryonic teratocarcinoma cells.

View Article and Find Full Text PDF