Publications by authors named "Michael Duwel"

The oncoprotein MDM2 (murine double minute 2) is often overexpressed in human tumors and thereby attenuates the function of the tumor suppressor p53. In this study, we investigated the effects of the novel MDM2-inhibitor PXN727 on p53 activation, cell proliferation, cell cycle distribution and radiosensitivity. Since the localization of heat shock protein 70 (Hsp70) exerts different effects on radioresistance of tumor cells, we investigated the impact of PXN727 on intracellular, membrane, and secreted Hsp70 levels.

View Article and Find Full Text PDF

Transcription factor NF-κB regulates the physiological response to a variety of stimuli. The NF-κB pathway has served as a paradigm for analyzing the impact of the covalent protein modifier ubiquitin on signal transduction. The discovery in the early 1990s that degradation of cytosolic NF-κB inhibitors (IκBs) is mediated by the ubiquitin proteasome system (UPS) was the first example for a direct involvement of ubiquitination in cellular signaling.

View Article and Find Full Text PDF

The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) represents a very aggressive human lymphoma entity. Constitutive NF-κB activation caused by chronic active B-cell receptor (BCR) signaling is common feature of many ABC DLBCL cells; however, the pathways linking BCR signaling to the NF-κB prosurvival network are largely unknown. Here we report that constitutive activity of PI3K and the downstream kinase PDK1 are essential for the viability of two ABC DLBCL cell lines that carry mutations in the BCR proximal signaling adaptor CD79B.

View Article and Find Full Text PDF

The Carma1-Bcl10-Malt1 (CBM) complex bridges T-cell receptor (TCR) signalling to the canonical IκB kinase (IKK)/NF-κB pathway. NF-κB activation is triggered by PKCθ-dependent phosphorylation of Carma1 after TCR/CD28 co-stimulation. PKCθ-phosphorylated Carma1 was suggested to function as a molecular scaffold that recruits preassembled Bcl10-Malt1 complexes to the membrane.

View Article and Find Full Text PDF

Diffuse large B cell lymphoma (DLBCL) is the most common type of lymphoma in humans. The aggressive activated B cell-like (ABC) subtype of DLBCL is characterized by constitutive NF-kappaB activity and requires signals from CARD11, BCL10, and the paracaspase MALT1 for survival. CARD11, BCL10, and MALT1 are scaffold proteins that normally associate upon antigen receptor ligation.

View Article and Find Full Text PDF

The Carma1-Bcl10-Malt1 signaling module bridges TCR signaling to the canonical IkappaB kinase (IKK)/NF-kappaB pathway. Covalent attachment of regulatory ubiquitin chains to Malt1 paracaspase directs TCR signaling to IKK activation. Further, the ubiquitin-editing enzyme A20 was recently suggested to suppress T cell activation, but molecular targets for A20 remain elusive.

View Article and Find Full Text PDF

The Carma1-Bcl10-Malt1 (CBM) complex connects T-cell receptor (TCR) signalling to the canonical IkappaB kinase (IKK)/NF (nuclear factor)-kappaB pathway. Earlier studies have indicated that the COP9 signalosome (CSN), a pleiotropic regulator of the ubiquitin/26S proteasome system, controls antigen responses in T cells. The CSN is required for the degradation of the NF-kappaB inhibitor IkappaBalpha, but other molecular targets involved in T-cell signalling remained elusive.

View Article and Find Full Text PDF

CVAK104 is a novel coated vesicle-associated protein with a serine/threonine kinase homology domain that was recently shown to phosphorylate the beta2-subunit of the adaptor protein (AP) complex AP2 in vitro. Here, we demonstrate that a C-terminal segment of CVAK104 interacts with the N-terminal domain of clathrin and with the alpha-appendage of AP2. CVAK104 localizes predominantly to the perinuclear region of HeLa and COS-7 cells, but it is also present on peripheral vesicular structures that are accessible to endocytosed transferrin.

View Article and Find Full Text PDF

Uncoating of clathrin-coated vesicles requires the J-domain protein auxilin for targeting hsc70 to the clathrin coats and for stimulating the hsc70 ATPase activity. This results in the release of hsc70-complexed clathrin triskelia and concomitant dissociation of the coat. To understand the complex role of auxilin in uncoating and clathrin assembly in more detail, we analyzed the molecular organization of its clathrin-binding domain (amino acids 547-813).

View Article and Find Full Text PDF