Publications by authors named "Michael Dills"

The clinical efficacy of epidermal growth factor receptor (EGFR)–targeted therapy in -mutant non–small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor () proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent mutation and amplification are historically thought to be codependent on the activation of both oncogenes.

View Article and Find Full Text PDF

Primary hyperoxalurias (PHs) are autosomal recessive disorders caused by the overproduction of oxalate leading to calcium oxalate precipitation in the kidney and eventually to end-stage renal disease. One promising strategy to treat PHs is to reduce the hepatic production of oxalate through substrate reduction therapy by inhibiting liver-specific glycolate oxidase (GO), which controls the conversion of glycolate to glyoxylate, the proposed main precursor to oxalate. Alternatively, diminishing the amount of hepatic lactate dehydrogenase (LDH) expression, the proposed key enzyme responsible for converting glyoxylate to oxalate, should directly prevent the accumulation of oxalate in PH patients.

View Article and Find Full Text PDF

Glycogen storage diseases (GSDs) of the liver are devastating disorders presenting with fasting hypoglycemia as well as hepatic glycogen and lipid accumulation, which could lead to long-term liver damage. Diet control is frequently utilized to manage the potentially dangerous hypoglycemia, but there is currently no effective pharmacological treatment for preventing hepatomegaly and concurrent liver metabolic abnormalities, which could lead to fibrosis, cirrhosis, and hepatocellular adenoma or carcinoma. In this study, we demonstrate that inhibition of glycogen synthesis using an RNAi approach to silence hepatic Gys2 expression effectively prevents glycogen synthesis, glycogen accumulation, hepatomegaly, fibrosis, and nodule development in a mouse model of GSD III.

View Article and Find Full Text PDF

In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages.

View Article and Find Full Text PDF

Unlabelled: Sulfolobus turreted icosahedral virus (STIV), an archaeal virus that infects the hyperthermoacidophile Sulfolobus solfataricus, is one of the most well-studied viruses of the domain Archaea. STIV shares structural, morphological, and sequence similarities with viruses from other domains of life, all of which are thought to belong to the same viral lineage. Several of these common features include a conserved coat protein fold, an internal lipid membrane, and a DNA-packaging ATPase.

View Article and Find Full Text PDF