Publications by authors named "Michael Dietze"

Climate, environmental conditions, and management strategies are key factors affecting forest net ecosystem production (NEP). However, little is known about the relationship between management approaches and regional to continental-scale forest productivity. In this study, we utilized forests of the U.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines the relationship between tree maturation size and reproduction, finding that larger tree species tend to start reproducing at a smaller size than expected, challenging previous assumptions.
  • - Researchers analyzed seed production data from 486 tree species across different climates, revealing that maturation size increases with maximum size but not in a straightforward manner.
  • - The results indicate that this trend is particularly pronounced in colder climates, highlighting the importance of understanding maturation size to better predict how forests will respond to climate change and disturbances.
View Article and Find Full Text PDF
Article Synopsis
  • Masting is when trees produce a lot of seeds at different times, which helps them survive by confusing animals that eat seeds.
  • However, this can be bad for the animals that help trees spread their seeds because they rely on a steady food supply.
  • Researchers found that some trees avoid masting to keep their disperser animals happy, especially in different climates and depending on how much nutrients they need to grow.
View Article and Find Full Text PDF

Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system.

View Article and Find Full Text PDF

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged.

View Article and Find Full Text PDF
Article Synopsis
  • Lack of data on tree seed production across different climates makes it hard to understand how seed availability affects forest regeneration and biodiversity.
  • A global analysis shows that seed abundance increases significantly (by 250 times) from cold-dry to warm-wet climates, mainly due to a hundredfold increase in seeds produced by the same size tree.
  • This dramatic rise in seed supply could be influenced by either evolutionary adaptations to intense species interactions or by the warm, moist climate's direct impact on tree fecundity, which may also affect food webs and species interactions, especially in wet tropical regions.
View Article and Find Full Text PDF

Near-term ecological forecasts provide resource managers advance notice of changes in ecosystem services, such as fisheries stocks, timber yields, or water quality. Importantly, ecological forecasts can identify where there is uncertainty in the forecasting system, which is necessary to improve forecast skill and guide interpretation of forecast results. Uncertainty partitioning identifies the relative contributions to total forecast variance introduced by different sources, including specification of the model structure, errors in driver data, and estimation of current states (initial conditions).

View Article and Find Full Text PDF

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality).

View Article and Find Full Text PDF

Most trees on Earth form a symbiosis with either arbuscular mycorrhizal or ectomycorrhizal fungi. By forming common mycorrhizal networks, actively modifying the soil environment and other ecological mechanisms, these contrasting symbioses may generate positive feedbacks that favour their own mycorrhizal strategy (that is, the con-mycorrhizal strategy) at the expense of the alternative strategy. Positive con-mycorrhizal feedbacks set the stage for alternative stable states of forests and their fungi, where the presence of different forest mycorrhizal strategies is determined not only by external environmental conditions but also mycorrhiza-mediated feedbacks embedded within the forest ecosystem.

View Article and Find Full Text PDF

Robust ecological forecasting of tree growth under future climate conditions is critical to anticipate future forest carbon storage and flux. Here, we apply three ingredients of ecological forecasting that are key to improving forecast skill: data fusion, confronting model predictions with new data, and partitioning forecast uncertainty. Specifically, we present the first fusion of tree-ring and forest inventory data within a Bayesian state-space model at a multi-site, regional scale, focusing on Pinus ponderosa var.

View Article and Find Full Text PDF

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread.

View Article and Find Full Text PDF

Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees.

View Article and Find Full Text PDF

Early warning is a critical potential tool for mitigating the impacts of large mass wasting and flood events, a major hazard in the Himalaya. We used data from a dense seismic network in Uttarakhand, India, to detect and track a fatal rockslide to mass flow to flood cascade and examine the potential for regional networks to provide early warning for extreme flow events. Detection limits of the 7 February 2021 event depend on the nature of the active process and on the anthropogenic and environmental seismic noise levels at each station.

View Article and Find Full Text PDF

Noise pollution can reduce the ability of urban protected areas to provide a refuge for people and habitat for wildlife. Amidst an unprecedented global pandemic, it is unknown if the changes in human activity have significantly impacted noise pollution in metropolitan parks. We tested the hypothesis that reduced human activity associated with the COVID-19 pandemic lockdowns would lead to reduced sound levels in protected areas compared with non-pandemic times.

View Article and Find Full Text PDF

Soil microorganisms shape ecosystem function, yet it remains an open question whether we can predict the composition of the soil microbiome in places before observing it. Furthermore, it is unclear whether the predictability of microbial life exhibits taxonomic- and spatial-scale dependence, as it does for macrobiological communities. Here, we leverage multiple large-scale soil microbiome surveys to develop predictive models of bacterial and fungal community composition in soil, then test these models against independent soil microbial community surveys from across the continental United States.

View Article and Find Full Text PDF

The largest dataset of soil metagenomes has recently been released by the National Ecological Observatory Network (NEON), which performs annual shotgun sequencing of soils at 47 sites across the United States. NEON serves as a valuable educational resource, thanks to its open data and programming tutorials, but there is currently no introductory tutorial for accessing and analyzing the soil shotgun metagenomic dataset. Here, we describe methods for processing raw soil metagenome sequencing reads using a bioinformatics pipeline tailored to the high complexity and diversity of the soil microbiome.

View Article and Find Full Text PDF

Ecologists increasingly rely on complex computer simulations to forecast ecological systems. To make such forecasts precise, uncertainties in model parameters and structure must be reduced and correctly propagated to model outputs. Naively using standard statistical techniques for this task, however, can lead to bias and underestimation of uncertainties in parameters and predictions.

View Article and Find Full Text PDF

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size.

View Article and Find Full Text PDF
Article Synopsis
  • Lianas, despite contributing minimally to forest carbon stocks, significantly influence carbon dynamics by negatively affecting tree health and growth, which hinders ecosystem productivity and carbon storage.
  • The study employs a process-based vegetation model (ED2) to analyze the interactions between lianas and trees, focusing on water and light competition, while addressing challenges in previous research methodologies.
  • Model simulations indicate that water scarcity drives competition between lianas and trees in drier environments, while in wetter areas, light competition is more prominent, fluctuating with seasonal changes.
View Article and Find Full Text PDF

Forecasts of future forest change are governed by ecosystem sensitivity to climate change, but ecosystem model projections are under-constrained by data at multidecadal and longer timescales. Here, we quantify ecosystem sensitivity to centennial-scale hydroclimate variability, by comparing dendroclimatic and pollen-inferred reconstructions of drought, forest composition and biomass for the last millennium with five ecosystem model simulations. In both observations and models, spatial patterns in ecosystem responses to hydroclimate variability are strongly governed by ecosystem sensitivity rather than climate exposure.

View Article and Find Full Text PDF

In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery.

View Article and Find Full Text PDF
Article Synopsis
  • Forests change because of things like the environment and events like fires or storms, which affect how trees grow and die.
  • Because of climate change and human activities, forests are becoming younger and shorter in height.
  • New technology helps scientists better understand how forests change over time, which can help us learn more about plant life and how to protect forests.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncj0c3i2tig86r8es8oiomc2or94ru1o4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once