Free Radic Biol Med
August 2011
Hydroperoxide detoxification in African trypanosomes is achieved by 2-Cys-peroxiredoxin (TXNPx)- and non-selenium glutathione peroxidase (Px)-type enzymes which both obtain their reducing equivalents from the unique trypanothione/tryparedoxin system. Previous RNA interference approaches revealed that the cytosolic TXNPx and the Px-type enzymes are essential for Trypanosoma brucei. Because of partially overlapping in vitro substrate specificities and subcellular localisation the physiological function of the individual enzymes was not yet clear.
View Article and Find Full Text PDFTrypanosoma brucei, the causative agent of African sleeping sickness, encodes three cysteine homologues (Px I-III) of classical selenocysteine-containing glutathione peroxidases. The enzymes obtain their reducing equivalents from the unique trypanothione (bis(glutathionyl)spermidine)/tryparedoxin system. During catalysis, these tryparedoxin peroxidases cycle between an oxidized form with an intramolecular disulfide bond between Cys(47) and Cys(95) and the reduced peroxidase with both residues in the thiol state.
View Article and Find Full Text PDFA method to position nanoparticles onto DNA with high resolution using an enzyme-based approach is described. This provides a convenient route to assemble multiple nanoparticles (e.g.
View Article and Find Full Text PDFBiomolecular self-assembly provides a basis for the bottom-up construction of useful and diverse nanoscale architectures. DNA is commonly used to create these assemblies and is often exploited as a lattice or an array. Although geometrically rigid and highly predictable, these sheets of repetitive constructs often lack the ability to be enzymatically manipulated or elongated by standard biochemical techniques.
View Article and Find Full Text PDF