Publications by authors named "Michael Didie"

Engineered heart muscle (EHM) can be implanted epicardially to remuscularize the failing heart. In case of a severely scarred ventricle, excision of scar followed by transmural heart wall replacement may be a more desirable application. Accordingly, we tested the hypothesis that allograft (rat) and xenograft (human) EHM can also be administered as transmural heart wall replacement in a heterotopic, volume-loaded heart transplantation model.

View Article and Find Full Text PDF

Background: Echocardiography is one of the main diagnostic tools for the diagnostic workup of stroke and is already well integrated into the clinical workup. However, the value of transthoracic vs. transesophageal echocardiography (TTE/TEE) in stroke patients is still a matter of debate.

View Article and Find Full Text PDF

Aims: Identifying the key components in cardiomyocyte cell cycle regulation is of relevance for the understanding of cardiac development and adaptive and maladaptive processes in the adult myocardium. BRCA1-associated protein (BRAP) has been suggested as a cytoplasmic retention factor for several proteins including Cyclin-dependent-kinase inhibitor p21Cip. We observed profound expressional changes of BRAP in early postnatal myocardium and investigated the impact of BRAP on cardiomyocyte cell cycle regulation.

View Article and Find Full Text PDF

Heart failure due to pressure overload is frequently associated with inflammation. In addition to inflammatory responses of the innate immune system, autoimmune reactions of the adaptive immune system appear to be triggered in subgroups of patients with heart failure as demonstrated by the presence of autoantibodies against myocardial antigens. Moreover, T cell-deficient and T cell-depleted mice have been reported to be protected from heart failure induced by transverse aortic constriction (TAC) and we have shown recently that CD4-helper T cells with specificity for an antigen in cardiomyocytes accelerate TAC-induced heart failure.

View Article and Find Full Text PDF

Increased sarcoplasmic reticulum (SR) Ca leak via the cardiac ryanodine receptor (RyR2) has been suggested to play a mechanistic role in the development of heart failure (HF) and cardiac arrhythmia. Mice treated with a selective RyR2 stabilizer, rycal S36, showed normalization of SR Ca leak and improved survival in pressure overload (PO) and myocardial infarction (MI) models. The development of HF, measured by echocardiography and molecular markers, showed no difference in rycal S36- versus placebo-treated mice.

View Article and Find Full Text PDF

We investigated whether CD4-T cells with specificity for an antigen in cardiomyocytes promote the progression from hypertrophy to heart failure in mice with increased pressure load due to transverse aortic constriction (TAC). OT-II mice expressing a transgenic T cell receptor (TCR) with specificity for ovalbumin (OVA) on CD4-T cells and cMy-mOVA mice expressing OVA on cardiomyocytes were crossed. The resulting cMy-mOVA-OT-II mice did not display signs of spontaneous autoimmunity despite the fact that their OVA-specific CD4-T cells were not anergic.

View Article and Find Full Text PDF

Pluripotent parthenogenetic stem cells (pSCs) can be derived by pharmacological activation of unfertilized oocytes. Homozygosity of the major histocompatibility complex (MHC) in pSCs makes them an attractive cell source for applications in allogeneic tissue repair. This was recently demonstrated for pSC-based tissue-engineered heart repair.

View Article and Find Full Text PDF

The perspective to transplant grafts derived from pluripotent stem cells has gained much attention in recent years. Parthenogenetic stem cells (PSCs) are an alternative pluripotent stem cell type that is attractive as source of grafts for allogeneic transplantations because most PSCs are haploidentical for the major histocompatibility complex (MHC). This reduced immunogenetic complexity of PSCs could tremendously simplify the search for MHC-matched allogeneic stem cells.

View Article and Find Full Text PDF

TBC1D10C is a protein previously demonstrated to bind and inhibit Ras and Calcineurin. In cardiomyocytes, also CaMKII is inhibited and all three targeted enzymes are known to promote maladaptive cardiomyocyte hypertrophy. Here, in accordance with lack of Calcineurin inhibition in vivo, we did not observe a relevant anti-hypertrophic effect despite inhibition of Ras and CaMKII.

View Article and Find Full Text PDF

The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters.

View Article and Find Full Text PDF

Mineralocorticoid receptor (MR) inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox). Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP.

View Article and Find Full Text PDF

Parthenogenetic stem cells (PSCs) are a promising candidate donor for cell therapy applications. Similar to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), PSCs exhibit self-renewing capacity and clonogenic proliferation in vitro. PSCs exhibit largely haploidentical genotype, and as such may constitute an attractive population for allogenic applications.

View Article and Find Full Text PDF

Background: Pantoprazole has been shown to exert a negative inotropic effect in isolated myocardium. The purpose of this study was to evaluate the hemodynamic effects of pantoprazole in vivo in healthy myocardium and in the setting of heart failure.

Methods And Results: Healthy mice and mice with heart failure 4 weeks after myocardial infarction induced by permanent LAD ligation were instrumented with a Millar Mikrotip conductance catheter to record pressure-volume loops.

View Article and Find Full Text PDF

Objective: Elevated insulin and inflammatory cytokine levels in obesity may chronically activate signaling pathways regulating cardiac growth and contractility. Our aim was to examine the effect of obesity on cardiac PI3K isoform and Akt activation during left ventricular (LV) hypertrophy and heart failure.

Methods: Wild-type mice were fed normal chow or high-fat diet (HFD) for 2, 4, or 6 months.

View Article and Find Full Text PDF

The role of erythropoietin (Epo) in myocardial repair after infarction remains inconclusive. We observed high Epo receptor (EPOR) expression in cardiac progenitor cells (CPCs). Therefore, we aimed to characterize these cells and elucidate their contribution to myocardial regeneration on Epo stimulation.

View Article and Find Full Text PDF

Small animals are widely used for the identification of new therapeutic targets and the evaluation of potential anticancer therapies. To study tumors and metastasis in longitudinal studies of tumor progression, fast noninvasive and easy-to-handle imaging modalities are required. Here, techniques for the analysis of tumors and metastases by ultrasound imaging are described and the potential technical pitfalls are discussed.

View Article and Find Full Text PDF

Background: The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels.

View Article and Find Full Text PDF

Total mechanical unloading of the heart in classical models of heterotopic heart transplantation leads to cardiac atrophy and functional deterioration. In contrast, partial unloading of failing human hearts with left ventricular (LV) assist devices (LVADs) can in some patients ameliorate heart failure symptoms. Here we tested in heterotopic rat heart transplant models whether partial volume-loading (VL; anastomoses: aorta of donor to aorta of recipient, pulmonary artery of donor to left atrium of donor, superior vena cava of donor to inferior vena cava of recipient; n = 27) is superior to the classical model of myocardial unloading (UL; anastomoses: aorta of donor to aorta of recipient, pulmonary artery of donor to inferior vena cava of recipient; n = 14) with respect to preservation of ventricular morphology and function.

View Article and Find Full Text PDF

Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts.

View Article and Find Full Text PDF

Background: The angiotensin II receptor subtype 2 (AT2 receptor) is ubiquitously and highly expressed in early postnatal life. However, its role in postnatal cardiac development remained unclear.

Methodology/principal Findings: Hearts from 1, 7, 14 and 56 days old wild-type (WT) and AT2 receptor-deficient (KO) mice were extracted for histomorphometrical analysis as well as analysis of cardiac signaling and gene expression.

View Article and Find Full Text PDF

Rationale: Cardiac tissue engineering should provide "realistic" in vitro heart muscle models and surrogate tissue for myocardial repair. For either application, engineered myocardium should display features of native myocardium, including terminal differentiation, organotypic maturation, and hypertrophic growth.

Objective: To test the hypothesis that 3D-engineered heart tissue (EHT) culture supports (1) terminal differentiation as well as (2) organotypic assembly and maturation of immature cardiomyocytes, and (3) constitutes a methodological platform to investigate mechanisms underlying hypertrophic growth.

View Article and Find Full Text PDF

Rationale: Telethonin (also known as titin-cap or t-cap) is a 19-kDa Z-disk protein with a unique β-sheet structure, hypothesized to assemble in a palindromic way with the N-terminal portion of titin and to constitute a signalosome participating in the process of cardiomechanosensing. In addition, a variety of telethonin mutations are associated with the development of several different diseases; however, little is known about the underlying molecular mechanisms and telethonin's in vivo function.

Objective: Here we aim to investigate the role of telethonin in vivo and to identify molecular mechanisms underlying disease as a result of its mutation.

View Article and Find Full Text PDF

Aims: The calcineurin and nuclear factor of activated T cells (NFAT) pathway can mediate pro-hypertrophic signalling in the heart. Recently, it has been shown that dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) phosphorylates NFAT, which limits calcineurin/NFAT signal transduction in T cells and hypertrophy in cultured cardiomyocytes. The hypothesis tested in this study was that DYRK1A prevents calcineurin/NFAT-mediated cardiac hypertrophy in vivo.

View Article and Find Full Text PDF

Transgenic (TG) Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) δ(C) mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca(2+) handling proteins as well as sarcolemmal Na(+) channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na(+) current (late I(Na)) in early HF (8-week-old TG mice).

View Article and Find Full Text PDF

Platelet-derived-growth-factor-BB (PDGF-BB) can protect various cell types from apoptotic cell death, and induce hypertrophic growth and proliferation, but little is known about its direct or indirect effects on cardiomyocytes. Cardiac muscle engineering is compromised by a particularly high rate of cardiomyocyte death. Here we hypothesized that PDGF-BB stimulation can (1) protect cardiomyocytes from apoptosis, (2) enhance myocyte content in and (3) consequently optimize contractile performance of engineered heart tissue (EHT).

View Article and Find Full Text PDF