Am J Physiol Renal Physiol
November 2018
Phosphate homeostasis is primarily maintained in the renal proximal tubules, where the expression of sodium/phosphate cotransporters (Npt2a and Npt2c) is modified by the endocrine actions of both fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH). However, the specific contribution of each regulatory pathway in the proximal tubules has not been fully elucidated in vivo. We have previously demonstrated that proximal tubule-specific deletion of the FGF23 coreceptor Klotho results in mild hyperphosphatemia with little to no change in serum levels of FGF23, 1,25(OH)D, and PTH.
View Article and Find Full Text PDFThe pathogenesis of parathyroid gland hyperplasia is poorly understood, and a better understanding is essential if there is to be improvement over the current strategies for prevention and treatment of secondary hyperparathyroidism. Here we investigate the specific role of Klotho expressed in the parathyroid glands (PTGs) in mediating parathyroid hormone (PTH) and serum calcium homeostasis, as well as the potential interaction between calcium-sensing receptor (CaSR) and Klotho. We generated mouse strains with PTG-specific deletion of Klotho and CaSR and dual deletion of both genes.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a worldwide public health problem that is growing in prevalence and is associated with severe complications. During the progression of the disease, a majority of CKD patients suffer oral complications. Dental implants are currently the most reliable and successful treatment for missing teeth.
View Article and Find Full Text PDFOsteocytes within the mineralized bone matrix control bone remodeling by regulating osteoblast and osteoclast activity. Osteocytes express the aging suppressor Klotho, but the functional role of this protein in skeletal homeostasis is unknown. Here we identify Klotho expression in osteocytes as a potent regulator of bone formation and bone mass.
View Article and Find Full Text PDFRenal Ca reabsorption is essential for maintaining systemic Ca homeostasis and is tightly regulated through the parathyroid hormone (PTH)/PTHrP receptor (PTH1R) signaling pathway. We investigated the role of PTH1R in the kidney by generating a mouse model with targeted deletion of PTH1R in the thick ascending limb of Henle (TAL) and in distal convoluted tubules (DCTs): Mutant mice exhibited hypercalciuria and had lower serum calcium and markedly increased serum PTH levels. Unexpectedly, proteins involved in transcellular Ca reabsorption in DCTs were not decreased.
View Article and Find Full Text PDFKlotho is a transmembrane protein expressed in the renal tubules where it acts as a permissive coreceptor for fibroblast growth factor 23 (FGF23). FGF23 signaling reduces the abundance of CYP27b1 and phosphate cotransporters NPT2a and NPT2c, leading to a decrease in 1,25(OH)2D3 synthesis and a rise in urinary phosphate excretion, respectively. Systemic or whole-nephron deletion of Klotho in mice results in renal FGF23 resistance characterized by high 1,25(OH)2D3 and phosphate levels and premature aging.
View Article and Find Full Text PDFDigit formation is a process, which requires the proper segmentation, formation and growth of phalangeal bones and is precisely regulated by several important factors. One such factor is Ihh, a gene linked to BDA1 and distal symphalangism in humans. In existing mouse models, mutations in Ihh have been shown to cause multiple synostosis in the digits but lead to perinatal lethality.
View Article and Find Full Text PDFParathyroid-hormone-type 1 receptor (PTH1R) is extensively expressed in key regulatory organs for systemic mineral ion homeostasis, including kidney and bone. We investigated the bone-specific functions of PTH1R in modulating mineral ion homeostasis by generating a novel mouse model in which PTH1R is ablated in the limb mesenchyme using Prx1Cre transgenic mice. Such ablation decreased FGF23 protein and serum levels by 50%, despite normal Fgf23 mRNA levels in long bones.
View Article and Find Full Text PDFIndian hedgehog (Ihh) is widely recognized as an essential factor for proper skeletal development. Previous in vivo studies using mutant Ihh mouse models were limited by perinatal lethality or carried out after a growth plate formed. Thus the important role of Ihh in mesenchymal cell differentiation has not been investigated.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a worldwide health problem. Serum levels of FGF23, a phosphaturic hormone, increase at the earliest stages of CKD, and have been found to be independently associated with the mortality and morbidity of CKD patients. The purpose of this study was to evaluate whether FGF23 neutralization was able to improve bone quality and osseointegration of titanium implants.
View Article and Find Full Text PDFIndian hedgehog (Ihh) is essential for chondrocyte differentiation and endochondral ossification and acts with parathyroid hormone-related peptide in a negative feedback loop to regulate early chondrocyte differentiation and entry to hypertrophic differentiation. Independent of this function, we and others recently reported independent Ihh functions to promote chondrocyte hypertrophy and matrix mineralization in vivo and in vitro. However, the molecular mechanisms for these actions and their functional significance are still unknown.
View Article and Find Full Text PDFThe physiological role of the osteocyte, the most numerous of the three bone cell types, was significantly underestimated until recently. It is now known that they not only coordinate bone remodeling but also have an endocrine function as part of the regulatory network for calcium and phosphate homeostasis. Vitamin D and osteocytes interact in numerous ways to accomplish these activities.
View Article and Find Full Text PDFExcessive FGF23 has been identified as a pivotal phosphaturic factor leading to renal phosphate-wasting and the subsequent development of rickets and osteomalacia. In contrast, loss of FGF23 in mice (Fgf23(-/-) ) leads to high serum phosphate, calcium, and 1,25-vitamin D levels, resulting in early lethality attributable to severe ectopic soft-tissue calcifications and organ failure. Paradoxically, Fgf23(-/-) mice exhibit a severe defect in skeletal mineralization despite high levels of systemic mineral ions and abundant ectopic mineralization, an abnormality that remains largely unexplained.
View Article and Find Full Text PDFMaintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/-) and Klotho(-/-) (Kl(-/-)) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis.
View Article and Find Full Text PDFFibroblast growth factor 23 (FGF23) is a key regulator of mineral ion homeostasis. Genetic ablation of Fgf23 in mice leads to severe biochemical disorders including elevated serum 1,25-dihydroxyvitamin D [1,25(OH)2D], hypercalcemia, hyperphosphatemia, and marked decreased PTH levels. Because PTH stimulates 1,25(OH)2D production and increases serum calcium levels, we hypothesized that ablation of PTH from the Fgf23 knockout (Fgf23-/-) mice could suppress these affects, thus ameliorating the soft tissue and skeletal anomalies in these animals.
View Article and Find Full Text PDFJansen metaphyseal chondrodysplasia (JMC) is caused by a constitutively activating mutation of the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor (PTHR1) and is characterized by widening of the metaphyses, reduction of long bone length, and short stature. A transgenic mouse expressing this mutation under the collagen α1(II) promoter has been generated to investigate the mechanisms responsible for this chondrodysplasia. We recently identified zinc finger protein 521 (Zfp521) as a downstream target gene of PTHrP signaling.
View Article and Find Full Text PDFParathyroid hormone (PTH) is widely recognized as a key regulator of mineral ion homeostasis. Daily intermittent administration of PTH is the only currently available anabolic therapy for bone disorders such as osteoporosis. Recent studies have shown that PTH increases transcription and secretion of fibroblast growth factor 23 (FGF-23), another important regulator of phosphate homeostasis and skeletal metabolism.
View Article and Find Full Text PDFIndian hedgehog (Ihh) is essential for chondrocyte proliferation/differentiation and osteoblast differentiation during prenatal endochondral bone formation. Ihh expression in postnatal chondrocytes has a non-redundant role in maintaining a growth plate and sustaining trabecular bone after birth. Loss of Ihh in postnatal chondrocytes results in fusion of the growth plate and a decrease in trabecular bone.
View Article and Find Full Text PDFA major breakthrough in systemic phosphate homeostasis regulation was achieved by the demonstration of strikingly similar physical, morphological, and biochemical phenotypes of fibroblast growth factor 23 (Fgf23) and klotho ablated mice, which led to identification of klotho as an Fgf23 signaling cofactor. Here, we generated Fgf23 and klotho double-knockout (Fgf23(-/-)/klotho(-/-)) mice to test the hypothesis whether Fgf23 has a klotho-independent function. Fgf23(-/-)/klotho(-/-) mice are viable and have high serum phosphate levels, similar to Fgf23(-/-) and klotho(-/-) single-knockout mice.
View Article and Find Full Text PDF