Phys Rev E Stat Nonlin Soft Matter Phys
January 2007
We characterize fully the polarization dynamics of the fundamental vector soliton of isotropic Kerr materials by measuring the Stokes parameters of an elliptically polarized self-trapped optical beam propagating in a slab planar waveguide. Our experiment clearly shows that this two-component spatial vector soliton exhibits both the so-called ellipse rotation and curved-shape ellipticity that are due to the self-induced nonlinear birefringence between the two components of the vector soliton. The polarization of the vector soliton is accurately determined both in the transverse and longitudinal directions and comparisons with numerical simulations based on two coupled nonlinear Schrödinger equations provide an excellent quantitative agreement.
View Article and Find Full Text PDFWe numerically and experimentally show the existence of multicolor vector spatial solitons in a Kerr planar waveguide through the combined effects of cross-phase modulation, four-wave mixing, and stimulated Raman scattering. Mutual spatial guiding of the Raman-Stokes, anti-Stokes, and pump waves is achieved in the high-conversion regime mainly by cross-phase modulation and phase-matched four-wave mixing induced by a power imbalance between Stokes and anti-Stokes components, leading to the generation of a clear-cut sech-shape three-frequency spatial soliton.
View Article and Find Full Text PDFWe report the experimental observation of the elliptically polarized fundamental vector soliton of isotropic Kerr media and its unique polarization evolution. This was achieved in the spatial domain in a nonbirefringent CS2 planar waveguide.
View Article and Find Full Text PDF