Publications by authors named "Michael Delp"

Aging leads to progressive bone loss, which is associated with impaired bone and marrow perfusion. The purpose of this study was to determine whether chronic exercise training enhances blood flow to the femur at rest and during exercise, and elucidate whether putative changes in training-induced bone perfusion are associated with alterations in the intrinsic vasomotor properties of the femoral principal nutrient artery (PNA) in old age. Young (4-6 mo old) and old (20-22 mo old) male Fischer-344 rats were either treadmill exercise trained (ET) or remained sedentary (SED).

View Article and Find Full Text PDF

The magnitude of bone formation and remodeling is linked to both the magnitude of strain placed on the bone and the perfusion of bone. It was previously reported that an increase in bone perfusion and bone density occurs in the femur of old rats with moderate aerobic exercise training. This study determined the acute and chronic effects of static muscle stretching on bone blood flow and remodeling.

View Article and Find Full Text PDF

There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored.

View Article and Find Full Text PDF

Solid tumors contain hypoxic regions that contribute to anticancer therapy resistance. Thus, mitigating tumor hypoxia may enhance the efficacy of radiation therapy which is commonly utilized for patients with prostate cancer. Increasing perfusion pressure in the prostate with head-up tilt (HUT) may augment prostate tumor perfusion and decrease hypoxia.

View Article and Find Full Text PDF

It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission.

View Article and Find Full Text PDF

Astronauts exhibit an assortment of clinical abnormalities in their eyes during long-duration spaceflight. The purpose of this study was to determine whether spaceflight induces epigenomic and transcriptomic reprogramming in the retina or alters the epigenetic clock. The mice were flown for 37 days in animal enclosure modules on the International Space Station; ground-based control animals were maintained under similar housing conditions.

View Article and Find Full Text PDF

Reduced knee weight-bearing from prescription or sedentary lifestyles are associated with cartilage degradation; effects on the meniscus are unclear. Rodents exposed to spaceflight or hind limb unloading (HLU) represent unique opportunities to evaluate this question. This study evaluated arthritic changes in the medial knee compartment that bears the highest loads across the knee after actual and simulated spaceflight, and recovery with subsequent full weight-bearing.

View Article and Find Full Text PDF

We tested the hypothesis that adiponectin deficiency attenuates cardiac and coronary microvascular function and prevents exercise training-induced adaptations of the myocardium and the coronary microvasculature in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 wk. Systolic and diastolic functions were assessed before and after exercise training or cage confinement.

View Article and Find Full Text PDF

Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.

View Article and Find Full Text PDF

Many factors contribute to the health risks encountered by astronauts on missions outside Earth's atmosphere. Spaceflight-induced potential adverse neurovascular damage and late neurodegeneration are a chief concern. The goal of the present study was to characterize the effects of spaceflight on oxidative damage in the mouse brain and its impact on blood-brain barrier (BBB) integrity.

View Article and Find Full Text PDF

: Mechanical forces and sympathetic influences are key determinants of vascular structure and function. This study tested the hypothesis that hindlimb unloading (HU) exerts diverse effects on forelimb and hindlimb small arteries of rats in functionally different regions of the skeletal muscle and skin. : Male Wistar rats were subjected to HU for 2 weeks, then skeletal muscle arteries (deep brachial and sural) and skin arteries (median and saphenous) were examined using wire myography or isobaric perfusion and glyoxylic acid staining.

View Article and Find Full Text PDF

The long-term adaptations to microgravity and other spaceflight challenges within the confines of a spacecraft, and readaptations to weight-bearing upon reaching a destination, are unclear. While post-flight gait change in astronauts have been well documented and reflect multi-system deficits, no data from rodents have been collected. Thus, the purpose of this study was to evaluate gait changes in response to spaceflight.

View Article and Find Full Text PDF

Extended spaceflight has been shown to adversely affect astronaut visual acuity. The purpose of this study was to determine whether spaceflight alters gene expression profiles and induces oxidative damage in the retina. Ten week old adult C57BL/6 male mice were flown aboard the ISS for 35 days and returned to Earth alive.

View Article and Find Full Text PDF

The health risks associated with spaceflight-induced ocular structural and functional damage has become a recent concern for NASA. The goal of the present study was to characterize the effects of spaceflight and reentry to 1 g on the structure and integrity of the retina and blood-retinal barrier (BRB) in the eye. To investigate possible mechanisms, changes in protein expression profiles were examined in mouse ocular tissue after spaceflight.

View Article and Find Full Text PDF

Astronauts are reported to have experienced some impairment in visual acuity during their mission on the International Space Station (ISS) and after they returned to Earth. There is emerging evidence that changes in vision may involve alterations in ocular structure and function. To investigate possible mechanisms, changes in protein expression profiles and oxidative stress-associated apoptosis were examined in mouse ocular tissue after spaceflight.

View Article and Find Full Text PDF

The G protein-coupled estrogen receptor (GPER) is a significant modulator of arterial contractility and blood flow. The GPER-specific activator, G-1, has been widely used to characterize GPER function in a variety of tissue types. Large conductance, calcium (Ca)-activated K (BK) channels are sensitive to 17β-estradiol (17β-E2) and estrogenic compounds (e.

View Article and Find Full Text PDF

This paper demonstrates a unique and promising approach to study driver-bicyclist interactions from a driver's perspective by using in-vehicle sensory data from naturalistic driving studies. A total of 4789 events of drivers overtaking bicyclists were extracted from an existing naturalistic driving study in Michigan, United States. The vehicle lateral placement at the time of passing bicyclists was used as a surrogate safety measure.

View Article and Find Full Text PDF

Coronary microvascular function and blood flow responses during acute exercise are impaired in the aged heart but can be restored by exercise training. Coronary microvascular resistance is directly dependent on vascular smooth muscle function in coronary resistance arterioles; therefore, we hypothesized that age impairs contractile function and alters the phenotype of vascular smooth muscle in coronary arterioles. We further hypothesized that exercise training restores contractile function and reverses age-induced phenotypic alterations of arteriolar smooth muscle.

View Article and Find Full Text PDF

Key Points: In a rat model of ageing that is free of atherosclerosis or hypertension, E/A, a diagnostic measure of diastolic filling, decreases, and isovolumic relaxation time increases, indicating that both active and passive ventricular relaxation are impaired with advancing age. Resting coronary blood flow and coronary functional hyperaemia are reduced with age, and endothelium-dependent vasodilatation declines with age in coronary resistance arterioles. Exercise training reverses age-induced declines in diastolic and coronary microvascular function.

View Article and Find Full Text PDF

As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth's protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth's magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts.

View Article and Find Full Text PDF

Weightlessness during spaceflight leads to functional changes in resistance arteries and loss of cancellous bone, which may be potentiated by radiation exposure. The purpose of this study was to assess the effects of hindlimb unloading (HU) and total-body irradiation (TBI) on the vasomotor responses of skeletal muscle arteries. Male C57BL/6 mice were assigned to control, HU (13-16 days), TBI (1 Gy (56)Fe, 600 MeV, 10 cGy/min) and HU-TBI groups.

View Article and Find Full Text PDF

Spaceflight-induced remodeling of the skull is characterized by greater bone volume, mineral density, and mineral content. To further investigate the effects of spaceflight on other non-weight bearing bones of the head, as well as to gain insight into potential factors mediating the remodeling of the skull, the purpose of the present study was to determine the effects of spaceflight on mandibular bone properties. Female C57BL/6 mice were flown 15d on the STS-131 Space Shuttle mission (n=8) and 13d on the STS-135 mission (n=5) or remained as ground controls (GC).

View Article and Find Full Text PDF

Spaceflight has profound effects on vascular function as a result of weightlessness that may be further compounded by radiation exposure. The purpose of the present study was to assess the individual and combined effects of hindlimb unloading (HU) and radiation (Rad) on vasodilator responses in the skeletal muscle vasculature. Adult male C57BL/6J mice were randomized to one of four groups: control (Con), HU (tail suspension for 15 days), Rad (200 cGy of (137)Cs), and HU-Rad (15-day tail suspension and 200 cGy of (137)Cs).

View Article and Find Full Text PDF