Publications by authors named "Michael Dawson"

Despite significant technological progress in prosthetic hands, a device with functionality akin to a biological extremity is far from realization. To better support the development of next-generation technologies, we investigated the grasping capabilities of clinically prescribable and commercially available (CPCA) prosthetic hands against those that are 3D-printed, which offer cost-effective and customizable solutions. Our investigation utilized the Anthropomorphic Hand Assessment Protocol (AHAP) as a benchtop evaluation of the multi-grasp performance of 3D-printed devices against CPCA prosthetic hands.

View Article and Find Full Text PDF

This paper presents new empirical data obtained from interviews and focus groups on older (50 and over) autistic people's experiences of accessing a variety of services. The involvement of older autistic people and giving voice to their experiences was central to all aspects of the research process. This work makes a significant contribution to the scarce literature on older autistic people.

View Article and Find Full Text PDF

The HoxEFUYH complex of Synechocystis PCC 6803 (S. 6803) consists of a HoxEFU ferredoxin:NAD(P)H oxidoreductase subcomplex and a HoxYH [NiFe]-hydrogenase subcomplex that catalyzes reversible H oxidation. Prior studies have suggested that the presence of HoxE is required for reactivity with ferredoxin; however, it is unknown how HoxE is functionally integrated into the electron transfer network of the HoxEFU:ferredoxin complex.

View Article and Find Full Text PDF

Growing antibiotic resistance is rapidly threatening the efficacy of treatments for Gram-negative infections. Bicycle molecules, constrained bicyclic peptides from diverse libraries generated by bacteriophage display that bind with high affinity to a chosen target are a potential new class of antibiotics. The generally impermeable bacterial outer membrane currently limits the access of peptides to bacteria.

View Article and Find Full Text PDF

AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species.

View Article and Find Full Text PDF

Wildlife diseases, such as the sea star wasting (SSW) epizootic that outbroke in the mid-2010s, appear to be associated with acute and/or chronic abiotic environmental change; dissociating the effects of different drivers can be difficult. The sunflower sea star, Pycnopodia helianthoides, was the species most severely impacted during the SSW outbreak, which overlapped with periods of anomalous atmospheric and oceanographic conditions, and there is not yet a consensus on the cause(s). Genomic data may reveal underlying molecular signatures that implicate a subset of factors and, thus, clarify past events while also setting the scene for effective restoration efforts.

View Article and Find Full Text PDF

Cognitive psychology considers the environment as providing information, not affecting fundamental information processes. Thus, cognitive psychology's traditional paradigms study responses to precisely timed stimuli in controlled environments. However, new research demonstrates the environment does influence cognitive processes and offers cognitive psychology new methods.

View Article and Find Full Text PDF

AbstractAn explanation for variation in impacts of sea star wasting disease across asteroid species remains elusive. Although various traits have been suggested to play a potential role in sea star wasting susceptibility, currently we lack a thorough comparison that explores how life-history and natural history traits shape responses to mass mortality across diverse asteroid taxa. To explore how asteroid traits may relate to sea star wasting, using available data and recognizing the potential for biological correlations to be driven by phylogeny, we generated a supertree, tested traits for phylogenetic association, and evaluated associations between traits and sea star wasting impact.

View Article and Find Full Text PDF

AbstractMass mortality events are increasing globally in frequency and magnitude, largely as a result of human-induced change. The effects of these mass mortality events, in both the long and short term, are of imminent concern because of their ecosystem impacts. Genomic data can be used to reveal some of the population-level changes associated with mass mortality events.

View Article and Find Full Text PDF
Article Synopsis
  • Cognitive scientists often utilize artificial neural networks (ANNs) without closely examining their internal workings, leading to potential gaps in understanding cognitive processes.
  • This research trains ANNs to classify musical chords and finds that connection weights can be analyzed through Fourier phase spaces, indicating a deep relationship between these networks and musical set theory.
  • The study reveals that while ANNs can classify chords based on similarities in Fourier structures, they do not perform the traditional Fourier analyses typically associated with musical theory, suggesting a broader scope for exploring musical cognition.
View Article and Find Full Text PDF

Theoretically, species' characteristics should allow estimation of dispersal potential and, in turn, explain levels of population genetic differentiation. However, a mismatch between traits and genetic patterns is often reported for marine species, and interpreted as evidence that life-history traits do not influence dispersal. Here, we couple ecological and genomic methods to test the hypothesis that species with attributes favouring greater dispersal potential-e.

View Article and Find Full Text PDF

Efforts to protect the ecologically and economically significant California Current Ecosystem from global change will greatly benefit from data about patterns of local adaptation and population connectivity. To facilitate that work, we present a reference-quality genome for the giant pink sea star, Pisaster brevispinus, a species of ecological importance along the Pacific west coast of North America that has been heavily impacted by environmental change and disease. We used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly of 550 Mb in length.

View Article and Find Full Text PDF

The California ribbed mussel, Mytilus californianus, is an ecosystem engineer crucial for the survival of many marine species inhabiting the intertidal zone of California. Here, we describe the first reference genome for M. californianus and compare it to previously published genomes from three other Mytilus species: M.

View Article and Find Full Text PDF

A commonly cited reason for the high abandonment rate of myoelectric prostheses is a lack of grip force sensory feedback. Researchers have attempted to restore grip force sensory feedback by stimulating the residual limb's skin surface in response to the prosthetic hand's measured grip force. Recent work has focused on restoring natural feedback to the missing digits directly through invasive surgical procedures.

View Article and Find Full Text PDF

Objective: Persons with normal arm function can perform complex wrist and hand movements over a wide range of limb positions. However, for those with transradial amputation who use myoelectric prostheses, control across multiple limb positions can be challenging, frustrating, and can increase the likelihood of device abandonment. In response, the goal of this research was to investigate convolutional neural network (RCNN)-based position-aware myoelectric prosthesis control strategies.

View Article and Find Full Text PDF

Ecosystems globally are under threat from ongoing anthropogenic environmental change. Effective conservation management requires more thorough biodiversity surveys that can reveal system-level patterns and that can be applied rapidly across space and time. Using modern ecological models and community science, we integrate environmental DNA and Earth observations to produce a time snapshot of regional biodiversity patterns and provide multi-scalar community-level characterization.

View Article and Find Full Text PDF

Novel polymyxin derivatives are often classified either as having direct activity against Gram-negative pathogens or as compounds inactive in their own right, which through permeabilization of the outer membrane act as potentiators of other antibiotics. Here, we report the systematic investigation of the influence of lipophilicity on microbiological activity (including against strains with reduced susceptibility to polymyxins), potentiation of rifampicin, and toxicity within a series of next-generation polymyxin nonapeptides. We demonstrate that the lipophilicity at the N-terminus and amino acids 6 and 7 in the cyclic peptide core is interchangeable and that the activity, ability to potentiate, and cytotoxicity all appear to be primarily driven by overall lipophilicity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a lake that frequently experiences harmful cyanobacterial blooms (cyanoHABs) due to cultural eutrophication, which increases nutrient levels from surrounding landscape development.
  • Sediment core analysis reveals that cyanobacteria have been part of the lake's ecosystem for a long time, but the specific toxin-producing species Dolichospermum sp. WA102 only became dominant in the mid-1990s.
  • Historical agricultural practices and fish stocking appear to have contributed to shifts in nutrient cycling and the lake's ecology, highlighting the need for informed management strategies to address current cyanoHAB issues.
View Article and Find Full Text PDF

Predictions and predictive knowledge have seen recent success in improving not only robot control but also other applications ranging from industrial process control to rehabilitation. A property that makes these predictive approaches well-suited for robotics is that they can be learned online and incrementally through interaction with the environment. However, a remaining challenge for many prediction-learning approaches is an appropriate choice of prediction-learning parameters, especially parameters that control the magnitude of a learning machine's updates to its predictions (the or ).

View Article and Find Full Text PDF

Lassa fever is a viral hemorrhagic fever caused by the Lassa virus LASV, which was first isolated in the rodent in 1974 in Kenema, Sierra Leone. As little is known about the abundance and the presence of LASV in rodents living in the Bo area, we carried out a small mammal longitudinal population survey. A standardized trapping session was performed in various habitats and seasons in six villages over two years (2014-2016) and samples collected were tested for arenavirus IgG and LASV.

View Article and Find Full Text PDF

AbstractSpatiotemporal environmental change can produce phenotypic differences within and between populations. For scyphozoans, the effect of environmental variation on phenotype has been unclear because of multiple challenges, including difficulties delimiting populations. Marine lakes, bodies of seawater entirely surrounded by land, provide an opportunity to study discrete populations and capture responses to perturbations.

View Article and Find Full Text PDF

Background: Powered hand exoskeletons are an emerging technology that have shown promise in assisting individuals with impaired hand function. A number of hand exoskeleton designs have been described in the literature; however, the majority have not been supported by patient-oriented criteria.

Objective: The aim of this study was to define preliminary end-user needs and expectations for an assistive hand exoskeleton.

View Article and Find Full Text PDF

The treatment of infection by Gram-negative bacteria is increasingly challenging as resistance to existing antibiotics spreads. Constrained peptides, selected for high target specificity and affinity via library display technologies, are an emerging therapeutic modality in many disease areas and may be a fertile source of new antibiotics. Currently, the utility of constrained peptides and other large molecules as antibiotics is limited by the outer membrane (OM) barrier of Gram-negative bacteria.

View Article and Find Full Text PDF

How does the brain represent musical properties? Even with our growing understanding of the cognitive neuroscience of music, the answer to this question remains unclear. One method for conceiving possible representations is to use artificial neural networks, which can provide biologically plausible models of cognition. One could train networks to solve musical problems, and then study how these networks encode musical properties.

View Article and Find Full Text PDF

Synthetic modifications have been made directly to the cyclic peptide core of polymyxin B, enabling the further understanding of structure activity relationships of this antimicrobial peptide. Such modified polymyxins are also substrates for enzymic hydrolysis, enabling the synthesis of a variety of semi-synthetic analogues, resulting in compounds with increased in vitro antibacterial activity.

View Article and Find Full Text PDF