A novel Group B Streptococcus (GBS) vaccine, based upon the GBS alpha-like surface proteins, is being developed by MinervaX for administration to pregnant women. The vaccine is intended to generate antibodies (IgG) capable of crossing the placenta, in order to passively immunize the baby and provide protection in utero and up to 3 months after birth. An initial vaccine candidate, GBS-NN (based on the N-terminal domains of Rib and AlphaC surface proteins) was replaced, due to insufficient cross-reactivity with the two other N-terminal proteins (Alp1 and Alp2/3), by a modified vaccine candidate designated GBS-NN/NN2 that included all four AlpNs.
View Article and Find Full Text PDFGroup B streptococcus (GBS) is a leading cause of life-threatening neonatal infections and subsets of adverse pregnancy outcomes. Essentially all GBS strains possess one allele of the alpha-like protein (Alp) family. A maternal GBS vaccine, consisting of the fused N-terminal domains of the Alps αC and Rib (GBS-NN), was recently demonstrated to be safe and immunogenic in healthy adult women.
View Article and Find Full Text PDFMaternal vaccination is a promising strategy for preventing neonatal disease caused by group B . The safety and immunogenicity of the prototype vaccine GBS-NN, a fusion protein consisting of the N-terminal domains of the alpha-like proteins (Alp) αC and Rib, were recently evaluated favorably in healthy adult women in a phase 1 trial. Here we demonstrate robust immunoglobulin G (IgG) and immunoglobulin A (IgA) responses against αC and Rib, as well as against the heterotypic Alp family members Alp1-Alp3.
View Article and Find Full Text PDFBackground: Group B Streptococcus (GBS) is the leading cause of life-threatening infections in new-borns and may cause invasive disease, stillbirth and preterm delivery during pregnancy. While no licensed vaccine exists, maternal immunization might protect against neonatal disease and adverse pregnancy outcomes. We assessed the safety and immunogenicity of a prototype vaccine consisting of the fused N-terminal domains of the AlphaC and Rib surface proteins of GBS (GBS-NN).
View Article and Find Full Text PDFEnterotoxigenic (ETEC) infections are a common cause of severe diarrheal illness in low- and middle-income countries. The live-attenuated ACE527 ETEC vaccine, adjuvanted with double mutant heat-labile toxin (dmLT), affords clear but partial protection against ETEC challenge in human volunteers. Comparatively, initial wild-type ETEC challenge completely protects against severe diarrhea on homologous re-challenge.
View Article and Find Full Text PDFBackground: There is no licensed vaccine against enterotoxigenic Escherichia coli (ETEC), a major cause of diarrhea-associated morbidity and mortality among infants and children in low-income countries and travelers. The results of this vaccination/challenge study demonstrate strong protection by an attenuated ETEC vaccine candidate, ACE527, when co-administered with a mucosal adjuvant, the double-mutant heat-labile toxin (dmLT) of ETEC.
Methods: Sixty healthy adults participated in a randomized, placebo-controlled, double-blind study with three doses of lyophilized ACE527 (∼3 × 10 of each strain per dose) administered orally with or without dmLT adjuvant (25 µg/dose).
Background: Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in the developing world. Enterotoxigenic E coli vaccinology has been challenged by genetic diversity and heterogeneity of canonical antigens. Examination of the antigenic breadth of immune responses associated with protective immunity could afford new avenues for vaccine development.
View Article and Find Full Text PDFBackground: Experimental human challenge models have played a major role in enhancing our understanding of infectious diseases. Primary outcomes have typically utilized overly simplistic outcomes that fail to entirely account for complex illness syndromes. We sought to characterize clinical outcomes associated with experimental infection with enterotoxigenic Escherichia coli (ETEC) and to develop a disease score.
View Article and Find Full Text PDFVaccination is considered the most cost-effective approach to preventing infectious diseases, yet better formulations and delivery methods for efficient distribution and administration of vaccines are needed, especially for low-resource settings. A fast-dissolving tablet (FDT) that could be packaged in a compact stackable blister sheet is a potentially attractive option for formulating oral vaccines, since it would minimally impact the cold chain and could potentially be administered directly to patients without reconstitution. This study focused on using one component of a live attenuated trivalent vaccine under development to produce a FDT for the prevention of diarrhea induced by enterotoxigenic Escherichia coli (ETEC).
View Article and Find Full Text PDFAn oral, live attenuated, three-strain recombinant bacterial vaccine, ACE527, was demonstrated to generate strong immune responses to colonization factor and toxin antigens of enterotoxigenic Escherichia coli (ETEC) in human volunteers. The vaccine was safe and well tolerated at doses of up to 10(11) CFU, administered in each of two doses given 21 days apart. These observations have now been extended in a phase 2b study with a total of 70 subjects.
View Article and Find Full Text PDFClin Vaccine Immunol
December 2011
Live attenuated oral enterotoxigenic Escherichia coli (ETEC) vaccines have been demonstrated to be safe and immunogenic in human volunteers and to provide a viable approach to provide protection against this important pathogen. This report describes the construction of new ETEC vaccine candidate strains from recent clinical isolates and their characterization. All known genes for ETEC toxins were removed, and attenuating deletion mutations were made in the aroC, ompC, and ompF chromosomal genes.
View Article and Find Full Text PDFClin Vaccine Immunol
December 2011
Immune responses against colonization factors (CFs) and the nontoxic B component of the enterotoxigenic Escherichia coli (ETEC) heat-labile toxin (LTB) are considered to be important for immunity against diarrhea caused by ETEC. Individual live attenuated ETEC derivatives that have had their toxin genes removed and whose aroC, ompC, and ompF genes are deleted have shown promise as vaccines against ETEC. The development of such strains has culminated in the testing of a three-strain-combination live attenuated vaccine known as ACE527, comprised of strains ACAM2025 expressing colonization factor antigen I (CFA/I) and LTB; ACAM2022, expressing CS5, CS6, and LTB; and ACAM2027, expressing CS1, CS2, CS3, and LTB.
View Article and Find Full Text PDFThe recrudescence of infection with Campylobacter jejuni after appropriate antibiotic treatment has not been previously reported in an immunocompetent adult. We present the complete clinical, microbiologic, and immunologic evaluation of a closely monitored healthy male with recrudescent C. jejuni infection occurring in the absence of immunodeficiency following experimental infection with a well-characterized strain.
View Article and Find Full Text PDFBackground: A robust human challenge model for Campylobacter jejuni is an important tool for the evaluation of candidate vaccines. The previously established model conveys a potential risk of Guillain-Barré syndrome attributable to lipooligosaccharide ganglioside mimicry. This work establishes a new C.
View Article and Find Full Text PDFThe development of vaccines against Campylobacter jejuni would be facilitated by the ability to perform phase II challenge studies. However, molecular mimicry of the lipooligosaccharide (LOS) of most C. jejuni strains with human gangliosides presents safety concerns about the development of Guillain-Barré syndrome.
View Article and Find Full Text PDFEnterotoxigenic E. coli (ETEC) are an important cause of diarrhea in developing countries, especially among indigenous children and travelers. In this randomized, double-blind, placebo-controlled trial, a live, attenuated CS1/CS3 ETEC strain, PTL-003, was tested as a potential vaccine strain.
View Article and Find Full Text PDFObjective: Enterotoxigenic Escherichia coli (ETEC) is a major cause of acute diarrhoea in children in the developing world, in travellers and in the military. Safe, effective vaccines could reduce morbidity and mortality. As immunity to ETEC is strain specific, the ability to create vaccines in vitro which express multiple antigens would be desirable.
View Article and Find Full Text PDFA gene cassette incorporating the crs-rsd site-specific recombination system from the Salmonella enterica subsp. enterica serovar Dublin virulence plasmid improved the inheritance in S. enterica serotype Typhi strain CVD908-htrA of a multicopy plasmid expression vector.
View Article and Find Full Text PDFInfect Immun
February 2006
Oral delivery of toxin-negative derivatives of enterotoxigenic Escherichia coli (ETEC) that express colonization factor antigens (CFA) with deletions of the aroC, ompC, ompF, and toxin genes may be an effective approach to vaccination against ETEC-associated diarrhea. We describe the creation and characterization of an attenuated CFA/I-expressing ETEC vaccine candidate, ACAM2010, from a virulent isolate in which the heat-stable enterotoxin (ST) and CFA/I genes were closely linked and on the same virulence plasmid as the enteroaggregative E. coli heat-stable toxin (EAST1) gene.
View Article and Find Full Text PDFA vaccine against enterotoxigenic Escherichia coli (ETEC) is needed to prevent diarrheal illness among children in developing countries and at-risk travelers. Two live attenuated ETEC strains, PTL002 and PTL003, which express the ETEC colonization factor CFA/II, were evaluated for safety and immunogenicity. In a randomized, double-blind, placebo-controlled trial, 19 subjects ingested one dose, and 21 subjects ingested two doses (days 0 and 10) of PTL-002 or PTL-003 at 2 x 10(9) CFU/dose.
View Article and Find Full Text PDFInfect Immun
September 2002
Recombinant vaccine strains of Salmonella enterica serovar Typhi capable of expressing Helicobacter pylori urease were generated by transforming strains CVD908 and CVD908-htrA with a plasmid harboring the ureAB genes under the control of an in vivo-inducible promoter. The plasmid did not interfere with the ability of either strain to replicate and persist in human monocytic cells or with their transient colonization of mouse lungs. When administered to mice intranasally, both recombinant strains elicited antiurease immune responses skewed towards a Th1 phenotype.
View Article and Find Full Text PDF