We previously tested HER2-targeted antibody-drug conjugates (ADCs) in immunocompromised (SCID) mice, precluding evaluation of host immunity, impact on cancer stem cells (CSCs), and potential benefit when combined with PD-L1 blockade. In this study, we tested HER2-targeted ADC in two immunocompetent mouse tumor models. HER2-targeted ADC specifically inhibited the growth of HER2-expressing tumors, prolonged animal survival, and reduced HER2 and PD-L1 cells.
View Article and Find Full Text PDFLigation of OX40 (CD134, TNFRSF4) on activated T cells by its natural ligand (OX40L, CD252, TNFSF4) enhances cellular survival, proliferation, and effector functions such as cytokine release and cellular cytotoxicity. We engineered a recombinant human OX40L IgG4P Fc fusion protein termed MEDI6383 that assembles into a hexameric structure and exerts potent agonist activity following engagement of OX40. MEDI6383 displayed solution-phase agonist activity that was enhanced when the fusion protein was clustered by Fc gamma receptors (FcγRs) on the surface of adjacent cells.
View Article and Find Full Text PDFTo generate and characterize a murine GITR ligand fusion protein (mGITRL-FP) designed to maximize valency and the potential to agonize the GITR receptor for cancer immunotherapy. The EC value of the mGITRL-FP was compared with an anti-GITR antibody in an agonistic cell-based reporter assay. We assessed the impact of dose, schedule, and Fc isotype on antitumor activity and T-cell modulation in the CT26 tumor model.
View Article and Find Full Text PDFIndividual or combinations of somatic mutations found in genes from colorectal cancers can redirect the effects of chemotherapy and targeted agents on cancer cell survival and, consequently, on clinical outcome. Novel therapeutics with mechanisms of action that are independent of mutational status would therefore fulfill a current unmet clinical need. Here the CEA and CD3 bispecific single-chain antibody MEDI-565 (also known as MT111 and AMG 211) was evaluated for its ability to activate T cells both in vitro and in vivo and to kill human tumor cell lines harboring various somatic mutations commonly found in colorectal cancers.
View Article and Find Full Text PDFMEDI-565 (also known as MT111) is a bispecific T-cell engager (BiTE®) antibody in development for the treatment of patients with cancers expressing carcinoembryonic antigen (CEA). MEDI-565 binds CEA on cancer cells and CD3 on T cells to induce T-cell mediated killing of cancer cells. To understand the molecular basis of human CEA recognition by MEDI-565 and how polymorphisms and spliced forms of CEA may affect MEDI-565 activity, we mapped the epitope of MEDI-565 on CEA using mutagenesis and homology modeling approaches.
View Article and Find Full Text PDFCarcinoembryonic antigen (CEA, CD66e) is a well-characterized tumor-associated antigen that is frequently overexpressed in tumors. Phospholipases release CEA from tumor cells resulting in high circulating serum levels of soluble CEA (sCEA) that has been validated as marker for progression of colorectal, breast, and lung cancers. sCEA also acts as a competitive inhibitor for anticancer strategies targeting membrane-bound CEA.
View Article and Find Full Text PDFIntroduction: Signaling downstream of Ras is mediated by three major pathways, Raf/ERK, phosphatidylinositol 3 kinase (PI3K), and Ral guanine nucleotide exchange factor (RalGEF). Ras signal transduction pathways play an important role in breast cancer progression, as evidenced by the frequent over-expression of the Ras-activating epidermal growth factor receptors EGFR and ErbB2. Here we investigated which signal transduction pathways downstream of Ras contribute to EGFR-dependent transformation of telomerase-immortalized mammary epithelial cells HME16C.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2005
Hepatocyte growth factor activator inhibitor-1 (HAI-1) was initially identified as cognate inhibitor of matriptase, a membrane-bound serine protease. Paradoxically, HAI-1 is also required for matriptase activation, a process that requires sphingosine 1-phosphate (S1P)-mediated translocation of the protease to cell-cell junctions in human mammary epithelial cells. In the present study, we further explored how HAI-1 regulates this protease.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P), a bioactive phospholipid, simultaneously induces actin cytoskeletal rearrangements and activation of matriptase, a membrane-associated serine protease in human mammary epithelial cells. In this study, we used a monoclonal antibody selective for activated, two-chain matriptase to examine the functional relationship between these two S1P-induced events. Ten minutes after exposure of 184 A1N4 mammary epithelial cells to S1P, matriptase was observed to accumulate at cell-cell contacts.
View Article and Find Full Text PDFMatriptase is a type II transmembrane serine protease that has been implicated in the progression of epithelium-derived tumors. The role of this protease in the biology of normal epithelial cells remains to be elucidated. Matriptase mRNA has been detected by Northern analysis in tissues rich in epithelial cells, and the protein is expressed in vivo in normal and cancerous breast, ovarian, and colon tissues.
View Article and Find Full Text PDFThere are increasing data that suggest a role for the serine protease matriptase and its inhibitor, hepatocyte growth factor activator inhibitor-1, in the pathogenesis and progression of ovarian cancer. This review will discuss the matriptase/inhibitor system in the context of ovarian cancer and examine the possibility that this system might be a useful therapeutic and/or diagnostic target in this disease.
View Article and Find Full Text PDFThe activation of matriptase requires proteolytic cleavage at a canonical activation motif that converts the enzyme from a one-chain zymogen to an active, two-chain protease. In this study, matriptase bearing a mutation in its catalytic triad was unable to undergo this activational cleavage, suggesting that the activating cleavage occurs via a transactivation mechanism where interaction between matriptase zymogen molecules leads to activation of the protease. Using additional point and deletion mutants, we showed that activation of matriptase requires proteolytic processing at Gly-149 in the SEA domain of the protease, glycosylation of the first CUB domain and the serine protease domain, and intact low density lipoprotein receptor class A domains.
View Article and Find Full Text PDFPurpose: Matriptase is a type II transmembrane serine protease expressed by cells of surface epithelial origin, including epithelial ovarian tumor cells. Matriptase cleaves and activates proteins implicated in the progression of ovarian cancer and represents a potential prognostic and therapeutic target. The aim of this study was to examine the expression of matriptase, and its inhibitor, hepatocyte growth factor activator inhibitor-1 (HAI-1), in epithelial ovarian cancer and to assign clinicopathological correlations.
View Article and Find Full Text PDF