Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for rapid identification of microbial natural products with both novel structures and potent activities.
View Article and Find Full Text PDFLife's organic molecules are built with diverse functional groups that enable biology by fine tuning intimate connections through time and space. As such, the discovery of new-to-nature functional groups can expand our understanding of the natural world and motivate new applications in biotechnology and biomedicine. Herein we report the genome-aided discovery of sulfenicin, a novel polyketide-nonribosomal peptide hybrid natural product from a marine bacterium bearing a unique acylsulfenic acid functionality.
View Article and Find Full Text PDFThe dissociation of iron from heme is a major factor in iron metabolism and the cellular concentrations of the metal correlate with heme degradation. We tested the hypotheses that (1) exposure to a product of heme catabolism, carbon monoxide (CO), alters iron homeostasis in the lung and in cultured respiratory epithelial cells; (2) this response includes both decreased uptake and increased release of cell metal; and (3) the effects of CO on cell function track changes in metal homeostasis. In rats exposed to 50 ppm CO for 24 hours, non-heme iron concentrations decreased in the lung and increased in the liver.
View Article and Find Full Text PDF