Histone modifications are important epigenetic mechanisms involved in eukaryotic gene regulation. Chromatin immunoprecipitation (ChIP) assay serves as the primary technique to characterize the genomic locations associated with histone modifications. However, traditional tube-based ChIP assays rely on large numbers of cells as well as laborious and time-consuming procedures.
View Article and Find Full Text PDFThe chicken beta-globin 5'HS4 insulator element acts as a barrier to the encroachment of chromosomal silencing. Endogenous 5'HS4 sequences are highly enriched with histone acetylation and H3K4 methylation regardless of neighboring gene expression. We report here that 5'HS4 elements recruit these histone modifications when protecting a reporter transgene from chromosomal silencing.
View Article and Find Full Text PDFWe have studied the physical properties of a segment of condensed chromatin that lies upstream of the chicken beta-globin locus. This segment can be excised from an avian erythroleukemia cell line by restriction enzyme digestion and released from the nucleus as an essentially homogeneous fragment about 15.5 kbp long.
View Article and Find Full Text PDFThe 1.2-kb DNA sequence element (5'HS4) at the 5' end of the chicken beta-globin locus has the two defining properties of an insulator: it prevents an "external" enhancer from acting on a promoter when placed between them ("enhancer blocking") and acts as a barrier to chromosomal position effect (CPE) when it surrounds a stably integrated reporter. We previously reported that a single CTCF-binding site in 5'HS4 is necessary and sufficient for enhancer blocking.
View Article and Find Full Text PDF