Publications by authors named "Michael D Guiry"

To date (1 November 2023), the online database AlgaeBase has documented 50,589 species of living algae and 10,556 fossil species here referred to four kingdoms (Eubacteria, Chromista, Plantae, and Protozoa), 14 phyla, and 63 classes. The algae are the third most speciose grouping of plant-like organisms after the flowering plants (≈382,000 species) and fungi (≈170,000 species, including lichens) but are the least well defined of all the botanical groupings. Priority is given to phyla and class names that are familiar to phycologists and that are nomenclaturally valid.

View Article and Find Full Text PDF

This updated list is composed of a total of 661 records, which includes 71 brown algae, 450 red algae, 137 green algae, and three seagrasses, with an overall rate of endemism of 13.2%. Almost half (46.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent evolutionary changes in marine brown algae, specifically in the Fucus genus, reveal complexities in speciation due to climate shifts and genetic mixing between populations.
  • - Research indicates that isolation of certain F. vesiculosus populations likely led to the development of new hermaphrodite species through a process of parapatric speciation, along with observed patterns of gene flow.
  • - Findings suggest that reproductive systems, especially self-fertilizing traits in hermaphrodites, play a critical role in maintaining species boundaries amidst extensive sympatry.
View Article and Find Full Text PDF

The genus (Bangiaceae, Rhodophyta), an important seaweed grown in aquaculture, is the most genetically diverse group of the Class Bangiophyceae, but has poorly understood genetic variability linked to complex evolutionary processes. Genetic studies in the last decades have largely focused on resolving gene phylogenies; however, there is little information on historical population biogeography, structure and gene flow in the Bangiaceae, probably due to their cryptic nature, chimerism and polyploidy, which render analyses challenging. This study aims to understand biogeographic population structure in the two abundant species in the Northeast Atlantic: (a dioecious annual) and (protandrous hermaphroditic winter annual), occupying distinct niches (seasonality and position on the shore).

View Article and Find Full Text PDF

The taxonomy of the genera Grateloupia, Phyllymenia, and Prionitis has been revised several times but remains controversial. The anatomy of female reproductive structures in combination with phylogenetic reconstructions is mostly used to define the genera. However, the architecture and behavior of the auxiliary cell ampullae before and after diploidization are not well documented for most species.

View Article and Find Full Text PDF

Accurate species identification often relies on public repositories to compare the barcode sequences of the investigated individual(s) with taxonomically assigned sequences. However, the accuracy of identifications in public repositories is often questionable, and the names originally given are rarely updated. For instance, species of the Sea Lettuce (Ulva spp.

View Article and Find Full Text PDF

Foliose Ulva spp. have become increasingly important worldwide for their environmental and financial impacts. A large number of such Ulva species have rapid reproduction and proliferation habits, which explains why they are responsible for Ulva blooms, known as "green tides", having dramatic negative effects on coastal ecosystems, but also making them attractive for aquaculture applications.

View Article and Find Full Text PDF

Climate-driven range-shifts create evolutionary opportunities for allopatric divergence and subsequent contact, leading to genetic structuration and hybrid zones. We investigate how these processes influenced the evolution of a complex of three closely related Cystoseira spp., which are a key component of the Mediterranean-Atlantic seaweed forests that are undergoing population declines.

View Article and Find Full Text PDF

The green algal genus Ostreobium is an important symbiont of corals, playing roles in reef decalcification and providing photosynthates to the coral during bleaching events. A chloroplast genome of a cultured strain of Ostreobium was available, but low taxon sampling and Ostreobium's early-branching nature left doubt about its phylogenetic position. Here, we generate and describe chloroplast genomes from four Ostreobium strains as well as Avrainvillea mazei and Neomeris sp.

View Article and Find Full Text PDF

The marine red algal family Liagoraceae sensu lato is shown to be polyphyletic based on analyses of a combined rbcL and psaA data set and the pattern of carposporophyte development. Fifteen of eighteen genera analyzed formed a monophyletic lineage that included the genus Liagora. Nemalion did not cluster with Liagoraceae sensu stricto, and Nemaliaceae is reinstated, characterized morphologically by the formation of the primary gonimolobes by longitudinal divisions of the gonimoblast initial.

View Article and Find Full Text PDF

Background: Reliable taxonomy underpins communication in all of biology, not least nature conservation and sustainable use of ecosystem resources. The flexibility of taxonomic interpretations, however, presents a serious challenge for end-users of taxonomic concepts. Users need standardised and continuously harmonised taxonomic reference systems, as well as high-quality and complete taxonomic data sets, but these are generally lacking for non-specialists.

View Article and Find Full Text PDF

We present a consensus classification of life to embrace the more than 1.6 million species already provided by more than 3,000 taxonomists' expert opinions in a unified and coherent, hierarchically ranked system known as the Catalogue of Life (CoL). The intent of this collaborative effort is to provide a hierarchical classification serving not only the needs of the CoL's database providers but also the diverse public-domain user community, most of whom are familiar with the Linnaean conceptual system of ordering taxon relationships.

View Article and Find Full Text PDF

Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms.

View Article and Find Full Text PDF

The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists.

View Article and Find Full Text PDF

Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered.

Results: There are ∼226,000 eukaryotic marine species described.

View Article and Find Full Text PDF

Algae have been estimated to include anything from 30,000 to more than 1 million species. An attempt is made here to arrive at a more accurate estimate using species numbers in phyla and classes included in the on-line taxonomic database AlgaeBase (http://www.algaebase.

View Article and Find Full Text PDF

A collection of Laminariales species was made with examples in each of the presently recognized families of the order. Extracts of each species were examined for betaines, using primarily 'H NMR spectroscopy for their identification. Glycinebetaine was detected in all species tested and would appear to be a consistent feature of the Laminariales.

View Article and Find Full Text PDF

Trebouxiophytes of the genus Prasiola are well known in Antarctica, where they are among the most important primary producers. Although many aspects of their biology have been thoroughly investigated, the scarcity of molecular data has so far prevented an accurate assessment of their taxonomy and phylogenetic position. Using sequences of the chloroplast genes rbcL and psaB, we demonstrate the existence of three cryptic species that were previously confused under Prasiola crispa (Lightfoot) Kützing.

View Article and Find Full Text PDF

In the continuation of our research on seaweeds, crude extracts of 21 brown algae collected from the south coast of England and the west coast of Ireland were screened for in vitro trypanocidal, leishmanicidal and antimycobacterial activities. Mammalian stages of a small set of parasitic protozoa; i.e.

View Article and Find Full Text PDF

Fourteen fern, two horsetail (Pteridophyta), three clubmoss (Lycopodiophyta), nine moss and two liverwort (Bryophyta, Marchantiophyta) species were examined for the presence of betaines. Glycinebetaine was detected in some of the fern, clubmoss, moss and liverwort species, but not in either of the two horsetail species examined. However, trigonelline was detected in one (Equisetum telmateia).

View Article and Find Full Text PDF

Klebsormidium is a cosmopolitan genus of green algae, widespread in terrestrial and freshwater habitats. The classification of Klebsormidium is entirely based on morphological characters, and very little is understood about its phylogeny at the species level. We investigated the diversity and phylogenetic relationships of Klebsormidium in urban habitats in Europe by a combination of approaches including examination of field-collected material, culture experiments conducted in many different combinations of factors, and phylogenetic analyses of the rbcL gene.

View Article and Find Full Text PDF

Phylogenetic relationships among 69 species of the Ceramiales (51 Ceramiaceae, six Dasyaceae, seven Delesseriaceae, and five Rhodomelaceae) were determined based on nuclear SSU rDNA sequence data. We resolved five strongly supported but divergent lineages among the included Ceramiaceae: (i) the genus Inkyuleea, which weakly joins other orders of the Rhodymeniophycidae rather than the Ceramiales in our analyses; (ii) the tribe Spyridieae, which is sister to the remainder of the included ceramialean taxa; (iii) the subfamily Ceramioideae, weakly including the tribe Warrenieae; (iv) the subfamily Callithamnioideae; and (v) the subfamily Compsothamnioideae, which emerges as sister to the Dasyaceae/Delesseriaceae/Rhodomelaceae complex, thus rendering the Ceramiaceae sensu lato unequivocally paraphyletic, as has been argued separately on anatomical grounds by Kylin and Hommersand. Our data support a restricted concept of the Ceramiaceae that includes only one of the five lineages (Ceramioideae) that we have resolved.

View Article and Find Full Text PDF

The order Trentepohliales is a widespread group of terrestrial green algae. As currently circumscribed, it includes six genera (Cephaleuros, Phycopeltis, Physolinum, Printzina, Stomatochroon and Trentepohlia), the phylogenetic affinities of which are poorly understood. Sequences for the small subunit rRNA gene (18S rDNA) were obtained for several representatives of the order and phylogenetic analyses based on these sequences were compared with the traditional system of classification based on morphological characters.

View Article and Find Full Text PDF