Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation by quantifying tRNA abundance in neural progenitor-biased and neuron-biased larval brains.
View Article and Find Full Text PDFN-methyladenosine (m6A) is the most prevalent internal mRNA modification in metazoans and is particularly abundant in the central nervous system. The extent to which m6A is dynamically regulated and whether m6A contributes to cell type-specific mRNA metabolism in the nervous system, however, is largely unknown. To address these knowledge gaps, we mapped m6A and measured mRNA decay in neural progenitors (neuroblasts) and neurons of the Drosophila melanogaster larval brain.
View Article and Find Full Text PDFObtaining neuron transcriptomes is challenging; their complex morphology and interconnected microenvironments make it difficult to isolate neurons without potentially altering gene expression. Multidendritic sensory neurons (md neurons) of Drosophila larvae are commonly used to study peripheral nervous system biology, particularly dendrite arborization. We sought to test if EC-tagging, a biosynthetic RNA tagging and purification method that avoids the caveats of physical isolation, would enable discovery of novel regulators of md neuron dendrite arborization.
View Article and Find Full Text PDFTissue-specific mRNA stability is important for cell fate and physiology, but the mechanisms involved are not fully understood. We found that zygotic mRNA stability in Drosophila correlates with codon content: optimal codons are enriched in stable transcripts associated with metabolic functions like translation, while non-optimal codons are enriched in unstable transcripts, including those associated with neural development. Bioinformatic analyses and reporter assays revealed that similar codons stabilize or destabilize mRNAs in the nervous system and other tissues, but the link between codon content and stability is attenuated in the nervous system.
View Article and Find Full Text PDFWiley Interdiscip Rev Dev Biol
July 2018
Cell type-specific transcription is a key determinant of cell fate and function. An ongoing challenge in biology is to develop robust and stringent biochemical methods to explore gene expression with cell type specificity. This challenge has become even greater as researchers attempt to apply high-throughput RNA analysis methods under in vivo conditions.
View Article and Find Full Text PDFPurification of cell type-specific RNAs remains a significant challenge. One solution involves biosynthetic tagging of target RNAs. RNA tagging via incorporation of 4-thiouracil (TU) in cells expressing transgenic uracil phosphoribosyltransferase (UPRT), a method known as TU-tagging, has been used in multiple systems but can have limited specificity due to endogenous pathways of TU incorporation.
View Article and Find Full Text PDFBackground: Gene expression patterns are determined by rates of mRNA transcription and decay. While transcription is known to regulate many developmental processes, the role of mRNA decay is less extensively defined. A critical step toward defining the role of mRNA decay in neural development is to measure genome-wide mRNA decay rates in neural tissue.
View Article and Find Full Text PDFNeural progenitors of the Drosophila larval brain, called neuroblasts, can be divided into distinct populations based on patterns of proliferation and differentiation. Type I neuroblasts produce ganglion mother cells (GMCs) that divide once to produce differentiated progeny, while type II neuroblasts produce self-renewing intermediate neural progenitors (INPs) and thus generate lineages containing many more progeny. We identified Taranis (Tara) as an important determinant of type I lineage-specific neural progenitor proliferation patterns.
View Article and Find Full Text PDFTranscriptional profiling is a powerful approach for understanding development and disease. Current cell type-specific RNA purification methods have limitations, including cell dissociation trauma or inability to identify all RNA species. Here, we describe "mouse thiouracil (TU) tagging," a genetic and chemical intersectional method for covalent labeling and purification of cell type-specific RNA in vivo.
View Article and Find Full Text PDFSimilar to mammalian neural progenitors, Drosophila neuroblasts progressively lose competence to make early-born neurons. In neuroblast 7-1 (NB7-1), Kruppel (Kr) specifies the third-born U3 motoneuron and Kr misexpression induces ectopic U3 cells. However, competence to generate U3 cells is limited to early divisions, when the Eve(+) U motoneurons are produced, and competence is lost when NB7-1 transitions to making interneurons.
View Article and Find Full Text PDFWe found that the combination of spatially restricted uracil phosphoribosyltransferase (UPRT) expression with 4-thiouracil delivery can be used to label and purify cell type-specific RNA from intact complex tissues in Drosophila melanogaster. This method is useful for isolating RNA from cell types that are difficult to isolate by dissection or dissociation methods and should work in many organisms, including mammals and other vertebrates.
View Article and Find Full Text PDFMicroarray-based analysis of mRNA expression has provided a genome-wide understanding of the genes and pathways involved in many biological processes. However, two limitations are often associated with traditional microarray experiments. First, standard methods of microarray analysis measure mRNA abundance, not mRNA synthesis or mRNA decay, and, therefore, do not provide any information regarding the mechanisms regulating transcript levels.
View Article and Find Full Text PDFRNA analysis by biosynthetic tagging (RABT) enables sensitive and specific queries of (a) how gene expression is regulated on a genome-wide scale and (b) transcriptional profiling of a single cell or tissue type in vivo. RABT can be achieved by exploiting unique properties of Toxoplasma gondii uracil phosphoribosyltransferase (TgUPRT), a pyrimidine salvage enzyme that couples ribose-5-phosphate to the N1 nitrogen of uracil to yield uridine monophosphate (UMP). When 4-thiouracil is provided as a TgUPRT substrate, the resultant product is 4-thiouridine monophosphate which can, ultimately, be incorporated into RNA.
View Article and Find Full Text PDFApicomplexans are responsible for significant human and animal disease worldwide, including malaria and toxoplasmosis. Herein we summarize recent advances in gene expression analysis in these eukaryotic pathogens, especially with respect to their developmental biology, and discuss the impact this work may have on the development of new vaccines and chemotherapeutics.
View Article and Find Full Text PDFCellular competence is an essential but poorly understood aspect of development. Is competence a general property that affects multiple signaling pathways (e.g.
View Article and Find Full Text PDFStandard microarrays measure mRNA abundance, not mRNA synthesis, and therefore cannot identify the mechanisms that regulate gene expression. We have developed a method to overcome this limitation by using the salvage enzyme uracil phosphoribosyltransferase (UPRT) from the protozoan Toxoplasma gondii. T.
View Article and Find Full Text PDFAsexual development in Toxoplasma gondii is a vital aspect of the parasite's life cycle, allowing transmission and avoidance of the host immune response. Differentiation of rapidly dividing tachyzoites into slowly growing, encysted bradyzoites involves significant changes in both physiology and morphology. We generated microarrays of approximately 4,400 Toxoplasma cDNAs, representing a minimum of approximately 600 genes (based on partial sequencing), and used these microarrays to study changes in transcript levels during tachyzoite-to-bradyzoite differentiation.
View Article and Find Full Text PDF