Publications by authors named "Michael D Chua"

The actin cytoskeleton forms much of the structure needed for the intracellular motility of an assortment of microbes as well as entire cells. The co-factor to the ubiquitin conjugating enzyme Ube2N (Ube2V1) has been implicated in both cancer cell metastasis and lysine-63 ubiquitylation of β actin. As this protein complexes with Ube2N, we sought to investigate whether Ube2N itself was involved in actin-based events occurring during the Listeria monocytogenes infections as well as within motile whole cells.

View Article and Find Full Text PDF

Klebsiella pneumoniae has become a growing concern within hospitals due to multidrug resistant strains and increasing mortality rates. Recently, we showed that at the subcellular level, K. pneumoniae compromises the integrity of the epithelia by disassembling the microtubule networks of cells through the actions of katanin microtubule severing proteins.

View Article and Find Full Text PDF

Klebsiella pneumoniae raises significant concerns to the health care industry as these microbes are the source of widespread contamination of medical equipment, cause pneumonia as well as other multiorgan metastatic infections and have gained multidrug resistance. Despite soaring mortality rates, the host cell alterations occurring during these infections remain poorly understood. Here, we show that during in vitro and in vivo K.

View Article and Find Full Text PDF

The ingestion of enteropathogenic Escherichia coli (EPEC), Listeria monocytogenes, or Salmonella enterica serovar Typhimurium leads to their colonization of the intestinal lumen, which ultimately causes an array of ailments ranging from diarrhea to bacteremia. Once in the intestines, these microbes generate various actin-rich structures to attach, invade, or move within the host intestinal epithelial cells. Although an assortment of actin-associated proteins has been identified to varying degrees at these structures, the localization of many actin stabilizing proteins have yet to be analyzed.

View Article and Find Full Text PDF

Enteropathogenic Escherichia coli (EPEC), Salmonella typhimurium, and Listeria monocytogenes usurp the actin cytoskeleton for their attachment, internalization and transport within and amongst infected cells. To try to gain a greater understanding of the molecular components utilized by these microbes during their infections we previously concentrated actin-rich structures generated during EPEC infections (called pedestals) and identified the heat shock cognate 70 protein (Hsc70) as a potential candidate. This multifunctional protein classically acts as a chaperone for the proper folding of a variety of proteins and is involved in uncoating clathrin from coated pits.

View Article and Find Full Text PDF

The host actin cytoskeleton is utilized by an assortment of pathogenic bacteria to colonize and cause disease in their hosts. Two prominently studied actin-hijacking bacteria are enteropathogenic Escherichia coli (EPEC) and Listeria monocytogenes. EPEC form actin-rich pedestals atop its host cells to move across the intestinal epithelia, while Listeria monocytogenes generate branched actin networks arranged as actin clouds around the bacteria and as comet tails for propulsion within and amongst their host cells.

View Article and Find Full Text PDF

Francisella tularensis (F. tularensis), the causative agent of tularemia, has long been known to invade and occupy non-phagocytic epithelial cells. Many epithelial cell infection models have been developed to study this process; however, due to the lack of consensus on infection methods and precise experimental procedures to evaluate invasion and replication, selection of appropriate models to use based on the literature is challenging.

View Article and Find Full Text PDF