To assess the impact of manufacturing changes on antibody structure and function during the course of product development, three comparability studies were performed for each of two different IgG1 monoclonal antibody product candidates. Comparability study #1 evaluated the effect of changing the cell line and bulk drug substance manufacturing process for cell culture and purification. Results indicated that these process changes led to differences in sialylation of N-glycans and/or C-terminal lysine levels.
View Article and Find Full Text PDFThe evaluation of a dual wavelength size exclusion high performance liquid chromatography (DW-SE-HPLC) method with improved sensitivity to detect aggregates in a high concentration IgG1 monoclonal antibody formulation is presented. This technique utilizes ultraviolet detection at two different wavelengths to monitor the levels of monomer, aggregate, and fragments and was shown to have improved sensitivity for the detection aggregates and fragments compared to light scattering (LS) detection. After assay optimization including the use of column conditioning, the limit of quantitation for aggregates was determined to be 0.
View Article and Find Full Text PDFThe photodegradation of a human IgG1 monoclonal antibody has been examined in a high concentration (100 mg/mL) liquid formulation. It was observed that a yellowish color is generated when the formulation is exposed to intense and prolonged light exposure, and this discoloration occurs along with a loss in bioactivity. Extensive analytical characterization was performed to determine light induced degradation pathways that occur during exposure to intense light of ICH photodegradation conditions.
View Article and Find Full Text PDF