Community-based participatory research (CBPR) is an effective way to address cancer disparities in medically underserved populations. Our research demonstrates how CBPR principles were used to develop lung cancer and risk factor mini reports for a network of community coalitions in the Illinois Delta Region, a predominately rural region with high lung cancer disparities in southern Illinois. An academic-community partnership, including a community-based medical school, state public health department, and a healthcare system, used CBPR principles to translate epidemiological, behavioral, and demographic data into understandable, comprehensive, yet concise mini reports for each coalition.
View Article and Find Full Text PDFThe mammalian hippocampus functions to encode and retrieve memories by transiently changing synaptic strengths, yet encoding in individual subregions for transmission between regions remains poorly understood. Toward the goal of better understanding the coding in the trisynaptic pathway from the dentate gyrus (DG) to the CA3 and CA1, we report a novel microfabricated device that divides a micro-electrode array into two compartments of separate hippocampal network subregions connected by axons that grow through 3 × 10 × 400 μm tunnels. Gene expression by qPCR demonstrated selective enrichment of separate DG, CA3, and CA1 subregions.
View Article and Find Full Text PDFSlow wave oscillations in the brain are essential for coordinated network activity but have not been shown to self-organize in vitro. Here, the development of dissociated hippocampal neurons into an active network with oscillations on multi-electrode arrays was evaluated in the absence and presence of chronic external stimulation. Significant changes in signal power were observed in the range of 1-400 Hz with an increase in amplitude during bursts.
View Article and Find Full Text PDFToward the goal of reproducible live neuronal networks, we investigated the influence of substrate patterns on neuron compliance and network activity. We optimized process parameters of micro-contact printing for reproducible geometric patterns of 10 μm wide lines of polylysine with 4, 6, or 8 connections at a constant square array of nodes overlying the recording electrodes of a multielectrode array (MEA). We hypothesized that an increase in node connections would give the network more inputs resulting in higher neuronal outputs as network spike rates.
View Article and Find Full Text PDFWe chronically stimulated hippocampal networks in culture for either 0, 1 or 3h/day between 7 and 22 days in culture in an effort to increase spontaneous spike rates and to give these networks some portion of external stimuli that brain networks receive during their formation. Chronic electrical stimulation of hippocampal networks on multi-electrode arrays (MEAs) increased spike rates 2-fold after 3 weeks of culture compared to cultures that received no external stimulation prior to recording. More than 90% of the spikes for all experimental conditions occurred within bursts.
View Article and Find Full Text PDFAstroglia are known to potentiate individual synapses, but their contribution to networks is unclear. Here we examined the effect of adding either astroglia or media conditioned by astroglia on entire networks of rat hippocampal neurons cultured on microelectrode arrays. Added astroglia increased spontaneous spike rates nearly two-fold and glutamate-stimulated spiking by six-fold, with desensitization eliminated for bath addition of 25 microM glutamate.
View Article and Find Full Text PDFThe most interesting property of neurons is their long-distance propagation of signals as spiking action potentials. Since 1993, Neurobasal/B27 has been used as a serum-free medium optimized for hippocampal neuron survival. Neurons on microelectrode arrays (MEA) were used as an assay system to increase spontaneous spike rates in media of different compositions.
View Article and Find Full Text PDF