Publications by authors named "Michael D Alpert"

eCD4-immunoglobulin (Ig) is an HIV entry inhibitor that mimics the engagement of both CD4 and CCR5 with the HIV envelope (Env) protein, a property that imbues it with remarkable potency and breadth. However, env is exceptionally genetically malleable and can evolve to escape a wide variety of entry inhibitors. Here we document the evolution of partial eCD4-Ig resistance in SHIV-AD8-infected rhesus macaques (RMs) treated with adeno-associated virus vectors encoding eCD4-Ig.

View Article and Find Full Text PDF

Human proteins repurposed as biologics for clinical use have been engineered through in vitro techniques that improve the affinity of the biologics for their ligands. However, the techniques do not select against properties, such as protease sensitivity or self-reactivity, that impair the biologics' clinical efficacy. Here we show that the B-cell receptors of primary murine B cells can be engineered to affinity mature in vivo the human CD4 domains of the HIV-1-entry inhibitor CD4 immunoadhesin (CD4-Ig).

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on engineering a human protein biologic, specifically a half-life enhanced HIV-1 entry inhibitor, into murine B cells without compromising their natural ability to improve binding affinity over time.
  • - By introducing CD4 domains into the heavy-chain loci of these B cells and transferring them into wild-type mice, the modified cells successfully proliferated and produced antibodies that neutralize HIV-1 more effectively.
  • - The findings suggest that affinity maturation techniques can enhance the therapeutic potential of non-antibody protein biologics, improving their effectiveness without losing important pharmacokinetic qualities.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers are engineering human proteins for clinical use but face challenges like sensitivity to proteases and self-reactivity, which can limit effectiveness.
  • The study specifically enhances B-cell receptors in mice to express a modified HIV-1 entry inhibitor, allowing B cells to mature and produce antibodies that can bind more effectively to HIV-1.
  • This approach resulted in a more than ten-fold increase in the ability of the modified protein to neutralize various HIV-1 strains, paving the way for better therapeutic development without losing desirable drug properties.
View Article and Find Full Text PDF

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is one of the most commonly used vectors for gene therapy, and the applications for AAV-delivered therapies are numerous. However, the current state of technology is limited by the low efficiency with which most AAV vectors transduce skeletal muscle tissue. We demonstrate that vector efficiency can be enhanced by modifying the AAV capsid with a peptide that binds a receptor highly expressed in muscle tissue.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus ) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related SARS-CoV-2, has been isolated from one horseshoe-bat species.

View Article and Find Full Text PDF

Objective: The objective of this study was to assess the accuracy of the Substance Abuse and Mental Health Services Administration (SAMHSA) database for patients who use it to seek buprenorphine treatment.

Design And Measurements: Buprenorphine providers within a 25-mile radius of the county with the highest drug-related death rates within the 10 states with the highest drug-related death rates were identified and called to determine whether the provider worked there, prescribed buprenorphine, accepted insurance, had appointments, or charged for visits.

Results: The number of providers listed in each county ranged from 1 to 166, with 5 counties having <10 providers.

View Article and Find Full Text PDF

Neurocognitive impairment (NCI) has been associated with poor clinical outcomes in various patient populations. This study used exploratory factor analysis (EFA) to examine the factor structure of the existing 95-item Neuropsychological Impairment Scale (NIS) to create a suitable NCI screening instrument for people living with HIV (PLH). In Lima, Peru, 313 HIV-positive men who have sex with men (MSM) and transgender women (TGW) prescribed antiretroviral therapy (ART) completed the NIS using computer-assisted self-interviews (CASI).

View Article and Find Full Text PDF

Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 μg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection.

View Article and Find Full Text PDF

We sought design principles for a vaccine to prevent HIV transmission to women by identifying correlates of protection conferred by a highly effective live attenuated SIV vaccine in the rhesus macaque animal model. We show that SIVmac239Δnef vaccination recruits plasma cells and induces ectopic lymphoid follicle formation beneath the mucosal epithelium in the rhesus macaque female reproductive tract. The plasma cells and ectopic follicles produce IgG Abs reactive with viral envelope glycoprotein gp41 trimers, and these Abs are concentrated on the path of virus entry by the neonatal FcR in cervical reserve epithelium and in vaginal epithelium.

View Article and Find Full Text PDF

The phase III RV144 HIV-1 vaccine trial estimated vaccine efficacy (VE) to be 31.2%. This trial demonstrated that the presence of HIV-1-specific IgG-binding Abs to envelope (Env) V1V2 inversely correlated with infection risk, while the presence of Env-specific plasma IgA Abs directly correlated with risk of HIV-1 infection.

View Article and Find Full Text PDF

HIV-1-specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response.

View Article and Find Full Text PDF

The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets.

View Article and Find Full Text PDF

Live-attenuated strains of simian immunodeficiency virus (SIV) routinely confer apparent sterilizing immunity against pathogenic SIV challenge in rhesus macaques. Understanding the mechanisms of protection by live-attenuated SIV may provide important insights into the immune responses needed for protection against HIV-1. Here we investigated the development of antibodies that are functional against neutralization-resistant SIV challenge strains, and tested the hypothesis that these antibodies are associated with protection.

View Article and Find Full Text PDF

The ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies.

View Article and Find Full Text PDF

Background: In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk.

View Article and Find Full Text PDF

Eliciting neutralizing antibodies is thought to be a key activity of a vaccine against human immunodeficiency virus (HIV). However, a number of studies have suggested that in addition to neutralization, interaction of IgG with Fc gamma receptors (FcγR) may play an important role in antibody-mediated protection. We have previously obtained evidence that the protective activity of the broadly neutralizing human IgG1 anti-HIV monoclonal antibody (MAb) b12 in macaques is diminished in the absence of FcγR binding capacity.

View Article and Find Full Text PDF

Passive transfer of neutralizing antibodies is effective in protecting rhesus macaques against simian/human immunodeficiency virus (SHIV) challenge. In addition to neutralization, effector functions of the crystallizable fragment (Fc) of antibodies are involved in antibody-mediated protection against a number of viruses. We recently showed that interaction between the Fc fragment of the broadly neutralizing antibody IgG1 b12 and cellular Fcγ receptors (FcγRs) plays an important role in protection against SHIV infection in rhesus macaques.

View Article and Find Full Text PDF

Immunization of rhesus macaques with strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection elicits T-cell responses to multiple viral gene products and antibodies capable of neutralizing lab-adapted SIV, but not neutralization-resistant primary isolates of SIV. In an effort to improve upon the antibody responses, we immunized rhesus macaques with three strains of single-cycle SIV (scSIV) that express envelope glycoproteins modified to lack structural features thought to interfere with the development of neutralizing antibodies. These envelope-modified strains of scSIV lacked either five potential N-linked glycosylation sites in gp120, three potential N-linked glycosylation sites in gp41, or 100 amino acids in the V1V2 region of gp120.

View Article and Find Full Text PDF

Objective: To determine the relevance of current gout quality indicators (QIs).

Methods: Members of the Veterans Affairs (VA) Rheumatology Consortium were invited to participate in an online survey and provide opinions (rank 0-10) regarding existing gout QIs. Opinions sought on each QI were 1) relevance to US veterans, 2) likelihood to improve gout care, and 3) ease of electronic capture.

View Article and Find Full Text PDF