Publications by authors named "Michael D'Erasmo"

Inherently limited by poor bioavailability, antiviral agent tenofovir (TFV) is administered to people living with HIV in prodrug form. However, current prodrugs are prematurely metabolized, compromising access to HIV-infected cells and inducing toxicity. Inspired by lipid conjugate TFV exalidex (TXL), we recently disclosed TXL analogs with potent activity and robust hepatic stability in vitro, as well as attractive oral PK profiles in vivo.

View Article and Find Full Text PDF

Background: N-methyl-D-aspartate receptor (NMDAR) are amino acid receptors that are well studied in brain physiology; however, their role in kidney is poorly understood. Nonetheless, NMDAR inhibitors can increase serum K+ and reduce GFR, which suggests they have an important physiological role in the kidney. We hypothesized that NMDARs in the distal nephron induce afferent-arteriole vasodilation through the vasodilator mechanism connecting-tubule-glomerular feedback (CNTGF) that involves ENaC activation.

View Article and Find Full Text PDF

The SARS-CoV-2 main protease (M) has been proven to be a highly effective target for therapeutic intervention, yet only one drug currently holds FDA approval status for this target. We were inspired by a series of publications emanating from the Jorgensen and Anderson groups describing the design of potent, non-peptidic, competitive SARS-CoV-2 M inhibitors, and we saw an opportunity to make several design modifications to improve the overall pharmacokinetic profile of these compounds without losing potency. To this end, we created a focused virtual library using reaction-based enumeration tools in the Schrödinger suite.

View Article and Find Full Text PDF

Subunit-selective inhibition of -methyl-d-aspartate receptors (NMDARs) is a promising therapeutic strategy for several neurological disorders, including epilepsy, Alzheimer's and Parkinson's disease, depression, and acute brain injury. We previously described the dihydroquinoline-pyrazoline (DQP) analogue () as a potent NMDAR negative allosteric modulator with selectivity for GluN2C/D over GluN2A/B. However, moderate (<100-fold) subunit selectivity, inadequate cell-membrane permeability, and poor brain penetration complicated the use of as an probe.

View Article and Find Full Text PDF

5-Fluorouracil and 5-fluorouracil-based prodrugs have been used clinically for decades to treat cancer. Their anticancer effects are most prominently ascribed to inhibition of thymidylate synthase (TS) by metabolite 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP). However, 5-fluorouracil and FdUMP are subject to numerous unfavorable metabolic events that can drive undesired systemic toxicity.

View Article and Find Full Text PDF

The C-20 oxime of progesterone, EIDD-036 (), demonstrates neuroprotection and improved outcomes in animal models of traumatic brain injury (TBI). However, suffers from poor solubility, which renders it unsuitable for rapid administration. Previous prodrugs of aimed at improving solubility by incorporating enzymatically labile amino acid and phosphate ester promoieties.

View Article and Find Full Text PDF

Nucleoside- and nucleotide-based therapeutics are indispensable treatment options for patients suffering from malignant and viral diseases. These agents are most commonly administered to patients as prodrugs to maximize bioavailability and efficacy. While the literature provides a practical prodrug playbook to facilitate the delivery of nucleoside and nucleotide therapeutics, small context-dependent amendments to these popular prodrug strategies can drive dramatic improvements in pharmacokinetic (PK) profiles.

View Article and Find Full Text PDF

Tenofovir (TFV) is the cornerstone nucleotide reverse transcriptase inhibitor (NtRTI) in many combination antiretroviral therapies prescribed to patients living with HIV/AIDS. Due to poor cell permeability and oral bioavailability, TFV is administered as one of two FDA-approved prodrugs, both of which metabolize prematurely in the liver and/or plasma. This premature prodrug processing depletes significant fractions of each oral dose and causes toxicity in kidney, bone, and liver with chronic administration.

View Article and Find Full Text PDF

α-Hydroxytropolones (αHTs) are troponoids that demonstrate inhibition against an array of therapeutically significant targets, making them potential drug leads for several human diseases. We have utilized a recently discovered one-pot three-component oxidopyrylium cycloaddition in a solid-supported synthesis of αHTs. Though the procedure is time efficient and generates assay-ready molecules, the system suffers from low yields and an inability to perform reaction modifications on resin-bound intermediates.

View Article and Find Full Text PDF

HIV Reverse Transcriptase-associated ribonuclease H activity is a promising enzymatic target for drug development that has not been successfully targeted in the clinic. While the α-hydroxytropolone-containing natural products β-thujaplicinol and manicol have emerged as some of the most potent leads described to date, structure-function studies have been limited to the natural products and semi-synthetic derivatives of manicol. Thus, a library of α-hydroxytropolones synthesized through a convenient oxidopyrylium cycloaddition/ring-opening sequence have been tested in and cell-based assays, and have been analyzed using computational support.

View Article and Find Full Text PDF

α-Hydroxytropolones are established inhibitors of several therapeutically relevant binuclear metalloenzymes, and thus lead drug targets for various human diseases. We have leveraged a recently-disclosed three-component oxidopyrylium cycloaddition in the first solid-phase synthesis of α-hydroxytropolones. We also showed that, while minor impurities exist after cleavage and aqueous wash, the semi-crude products display activity in HIV RT-associated RNaseH enzymatic and cell-based assays consistent with pure molecules made in solution phase.

View Article and Find Full Text PDF

We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid.

View Article and Find Full Text PDF

α-Hydroxy-γ-pyrone-based oxidopyrylium cycloaddition reactions are useful methods for accessing a highly diverse range of oxabicyclo[3.2.1]octane products.

View Article and Find Full Text PDF

The natural product α-hydroxytropolones manicol and β-thujaplicinol inhibit replication of herpes simplex viruses 1 and 2 (HSV-1 and HSV-2, respectively) at nontoxic concentrations. Because these were originally developed as divalent metal-sequestering inhibitors of the ribonuclease H activity of HIV-1 reverse transcriptase, α-hydroxytropolones likely target related HSV proteins of the nucleotidyltransferase (NTase) superfamily, which share an "RNase H-like" fold. One potential candidate is pUL15, a component of the viral terminase molecular motor complex, whose C-terminal nuclease domain, pUL15C, has recently been crystallized.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) and HSV-2 remain major human pathogens despite the development of anti-HSV therapeutics as some of the first antiviral drugs. Current therapies are incompletely effective and frequently drive the evolution of drug-resistant mutants. We recently determined that certain natural troponoid compounds such as β-thujaplicinol readily suppress HSV-1 and HSV-2 replication.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) remains a major human pathogen despite the development of both antiviral drugs and a vaccine, in part because the current therapies do not suppress HBV replication far enough to eradicate the virus. Here, we screened 51 troponoid compounds for their ability to suppress HBV RNaseH activity and HBV replication based on the activities of α-hydroxytropolones against HIV RNaseH, with the goal of determining whether the tropolone pharmacophore may be a promising scaffold for anti-HBV drug development. Thirteen compounds inhibited HBV RNaseH, with the best 50% inhibitory concentration (IC50) being 2.

View Article and Find Full Text PDF

Aminoglycoside-2"-O-nucleotidyltransferase ANT(2")-Ia is an aminoglycoside resistance enzyme prevalent among Gram-negative bacteria, and is one of the most common determinants of enzyme-dependant aminoglycoside-resistance. The following report outlines the use of our recently described oxidopyrylium cycloaddition/ring-opening strategy in the synthesis and profiling of a library of synthetic α-hydroxytropolones against ANT(2")-Ia. In addition, we show that two of these synthetic constructs are capable of rescuing gentamicin activity against ANT-(2")-Ia-expressing bacteria.

View Article and Find Full Text PDF

α-Hydroxytropolones are a subclass of the troponoid family of natural products that are of high interest due to their broad biological activity and potential as treatment options for several diseases. Despite this promise, there have been scarce synthetic chemistry-driven optimization studies on the molecules. The following review highlights key developments in the biological studies conducted on α-hydroxytropolones to date, including the few synthetic chemistry-driven optimization studies.

View Article and Find Full Text PDF

7,9-Diaryl-1,6,8-trioxaspiro[4.5]dec-3-en-2-ones are a recently described group of spirocyclic butenolides that can be generated rapidly and as a single diastereomer through a cascade process between γ-hydroxybutenolides and aromatic aldehydes. The following outlines our findings that these spirocycles are potently cytotoxic and have a dramatic structure-function profile that provides excellent insight into the structural features required for this potency.

View Article and Find Full Text PDF