Nanotechnology
September 2024
The use of mobile ultraviolet-C (UV-C) disinfection devices for the decontamination of surfaces in hospitals and other settings has increased dramatically in recent years. The efficacy of these devices relies on the UV-C dose they deliver to surfaces. This dose is dependent on the room layout, the shadowing, the position of the UV-C source, lamp degradation, humidity and other factors, making it challenging to estimate.
View Article and Find Full Text PDFBiomed Phys Eng Express
August 2022
New technologies, including robots comprising germ-killing UV lamps, are increasingly being used to decontaminate hospitals and prevent the spread of COVID-19 and other superbugs. Existing approaches for modelling the irradiance field surrounding mobile UV disinfection robots are limited by their inability to capture the physics of their bespoke geometrical configurations and do not account for reflections. The goal of this research was to extend current models to address these limitations and to subsequently verify these models using empirically collected data.
View Article and Find Full Text PDFBackground: Ultraviolet germicidal irradiation (UVGI) technologies have emerged as a promising adjunct to manual cleaning, however, their potential to shorten cleaning times remains unexplored.
Methods: A <10-minute disinfection procedure was developed using a robotic UVGI platform. The efficacy and time to perform the UVGI procedure in a CT scan treatment room was compared with current protocols involving manual disinfection using biocides.
Micromachines (Basel)
December 2021
The demand for graphene-based devices is rapidly growing but there are significant challenges for developing scalable and repeatable processes for the manufacturing of graphene devices. Basic research on understanding and controlling growth mechanisms have recently enabled various mass production approaches over the past decade. However, the integration of graphene with Micro-Nano Electromechanical Systems (MEMS/NEMS) has been especially challenging due to performance sensitivities of these systems to the production process.
View Article and Find Full Text PDFA robot's ability to grasp moving objects depends on the availability of real-time sensor data in both the far-field and near-field of the gripper. This research investigates the potential contribution of tactile sensing to a task of grasping an object in motion. It was hypothesised that combining tactile sensor data with a reactive grasping strategy could improve its robustness to prediction errors, leading to a better, more adaptive performance.
View Article and Find Full Text PDFOne of the biggest challenges in microscale additive manufacturing is the production of three-dimensional, microscale metal parts with a high enough throughput to be relevant for commercial applications. This paper presents a new microscale additive manufacturing process called microscale selective laser sintering (μ-SLS) that can produce true 3D metal parts with sub-5 μm resolution and a throughput of greater than 60 mm/hour. In μ-SLS, a layer of metal nanoparticle ink is first coated onto a substrate using a slot die coating system.
View Article and Find Full Text PDFTwo-photon lithography enables fabrication of complex 3D structures with nanoscale features. However, its utility is limited by the lack of knowledge about the process-property relationship. Here, we have designed micro-electro-mechanical systems (MEMS)-based miniaturized tensile testers to measure the stress-strain response of the individual polymer nanowires.
View Article and Find Full Text PDFMonolayer graphene is commonly grown on Cu substrates due to the self-limiting nature of graphene synthesis by chemical vapor deposition (CVD). Consequently, the growth of multilayer graphene by CVD has proven to be relatively difficult. This study demonstrates that the number of layers in graphene synthesized on a copper substrate can be precisely set by controlling the partial pressure of hydrogen gas used in the CVD process.
View Article and Find Full Text PDF- This paper presents the optics design for a microscale Selective Laser Sintering (μ-SLS) system that aims to allow large areas of nanoparticles to be sintered simultaneously while still maintaining micrometer scale feature resolutions in order to improve the throughput of the microscale additive manufacturing process. The optics design is shown to be able to sinter a 2.3 mm by 1.
View Article and Find Full Text PDFGrowth of high quality and monolayer graphene on copper thin films on silicon wafers is a promising approach to massive and direct graphene device fabrication in spite of the presence of potential dewetting issues in the copper film during graphene growth. Current work demonstrates roles of a nickel adhesion coupled with the copper film resulting in mitigation of dewetting problem as well as uniform monolayer graphene growth over 97 % coverage on films. The feasibility of monolayer graphene growth on Cu-Ni alloy films as thin as 150 nm in total is also demonstrated.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
April 2018
Purpose: Multipurpose robots that can perform a range of useful tasks have the potential to increase the quality of life for many people living with disabilities. Owing to factors such as high system complexity, as-yet unresolved research questions and current technology limitations, there is a need for effective strategies to coordinate the development process.
Method: Integrating established methodologies based on human-centred design and universal design, a framework was formulated to coordinate the robot design process over successive iterations of prototype development.
This paper presents the design and fabrication of a multi-axis microelectromechanical system (MEMS) force sensor with integrated carbon nanotube (CNT)-based piezoresistive sensors. Through the use of proper CNT selection and sensor fabrication techniques, the performance of the CNT-based MEMS force sensor was increased by approximately two orders of magnitude as compared to current CNT-based sensor systems. The range and resolution of the force sensor were determined as 84 μN and 5.
View Article and Find Full Text PDF