Unlabelled: Abnormal covariance pattern of regional metabolism associated with Parkinson disease (PD) is modulated by dopaminergic pharmacotherapy. Using high-resolution F-FDG PET and network analysis, we previously derived and validated a parkinsonism-related metabolic pattern (PRP) in nonhuman primate models of PD. It is currently not known whether this network is modulated by experimental therapeutics.
View Article and Find Full Text PDFBackground: Human retinal pigment epithelial (RPE) cells produce levodopa and their transplantation into the striatum might improve continuity of administration compared with that achieved with oral levodopa. We aimed to assess the safety, tolerability, and efficacy of transplantation of microcarrier-bound human RPE cells versus a sham surgery control in patients with advanced Parkinson's disease.
Methods: In this randomised, double-blind study eligible patients were aged 36-70 years, had been symptomatic for at least 5 years, were in Hoehn and Yahr stage 3-4 and had unified Parkinson's disease rating scale (UPDRS) motor scores of 38-70 when off medication (off state), and had symptoms that responded to oral levodopa but were insufficiently controlled by optimised pharmacotherapy.
Previous studies have demonstrated that the intrastriatal implantation of human retinal pigment epithelial cells attached to gelatin microcarriers (hRPE-GM) ameliorates behavioral deficits in animal models of Parkinson disease. However, there are only sparse data on cell survival in the host. In this study, we characterized a variety of retinal pigment epithelial (RPE)-specific markers in vitro and used these markers to investigate the long-term survival of hRPE-GM implants.
View Article and Find Full Text PDFIntrastriatal transplantation of gelatin microcarrier-attached human retinal pigment epithelial cells (hRPE-GM) may represent an alternative source for cell therapy in Parkinson disease (PD). The use of human retinal pigment epithelial (hRPE) cells in PD relies on the capacity of these cells to produce l-dopa as an intermediate product in the eumelanin synthesis pathway. We investigated the behavioral effects of hRPE-GM implants on forelimb use asymmetries and hindlimb motor deficits in unilateral and bilateral 6-hydroxydopamine (6-OHDA) rat models of PD.
View Article and Find Full Text PDFBackground: Human retinal pigment epithelial (RPE) cells produce levodopa and can be isolated from postmortem human eye tissue, grown in culture, and implanted into the brain attached to microcarriers. These implants ameliorated the motor deficits in rodent and nonhuman primate models of Parkinson disease.
Objective: To evaluate the safety and efficacy of unilateral implantation of human RPE cells attached to gelatin microcarriers into the putamen contralateral to the more symptomatic side of patients with Parkinson disease.
Evaluation of the safety and efficacy of unilateral stereotactic implantation of cultured human retinal pigment epithelial (hRPE) cells attached to microcarriers (Spheramine) in patients with advanced PD in an open label pilot study. Six patients with advanced PD (3 males; 3 females; mean age 52.2 years; mean duration of PD 10.
View Article and Find Full Text PDFAttachment of donor cells to microcarriers has been reported to make them more tolerable for transplantation into the brain. Human retinal pigment epithelial (hRPE) cells have been previously reported to contain enzymes for the production of dopa. Therefore, we examined the host immune response and behavioral effects of xenotransplantation of hRPE cells attached to microcarriers (hRPE-M) into the striatum of unilateral dopamine-depleted rats.
View Article and Find Full Text PDF