Publications by authors named "Michael Clavel"

The indirect nature of silicon (Si) emission currently limits the monolithic integration of photonic circuitry with Si electronics. Approaches to circumvent the optical shortcomings of Si include band structure engineering via alloying (e.g.

View Article and Find Full Text PDF

In this work, an in situ SiO passivation technique using atomic layer deposition (ALD) during the growth of gate dielectric TaSiO on solid-source molecular beam epitaxy grown (100)In Ga As and (110)In Ga As on InP substrates is reported. X-ray reciprocal space mapping demonstrated quasi-lattice matched In Ga As epitaxy on crystallographically oriented InP substrates. Cross-sectional transmission electron microscopy revealed sharp heterointerfaces between ALD TaSiO and (100) and (110)In Ga As epilayers, wherein the presence of a consistent growth of an ∼0.

View Article and Find Full Text PDF

Heteroepitaxial magnetoelectric (ME) composites are promising for the development of a new generation of multifunctional devices, such as sensors, tunable electronics, and energy harvesters. However, challenge remains in realizing practical epitaxial composite materials, mainly due to the interfacial lattice misfit strain between magnetostrictive and piezoelectric phases and strong substrate clamping that reduces the strain-mediated ME coupling. Here, we demonstrate a nonstrain-mediated ME coupling in PbZrTiO (PZT)/LaSrMnO (LSMO) heteroepitaxial composites that resolves these challenges, thereby, providing a giant magnetodielectric (MD) response of ∼27% at 310 K.

View Article and Find Full Text PDF

Because of the high carrier mobility of germanium (Ge) and high dielectric permittivity of amorphous niobium pentoxide (a-NbO), Ge/a-NbO heterostructures offer several advantages for the rapidly developing field of oxide-semiconductor-based multifunctional devices. To this end, we investigate the growth, structural, band alignment, and metal-insulator-semiconductor (MIS) electrical properties of physical vapor-deposited NbO on crystallographically oriented (100), (110), and (111)Ge epilayers. The as-deposited NbO dielectrics were found to be in the amorphous state, demonstrating an abrupt oxide/semiconductor heterointerface with respect to Ge, when examined via low- and high-magnification cross-sectional transmission electron microscopy.

View Article and Find Full Text PDF

Mixed-anion, GaAs1-ySby metamorphic materials with tunable antimony (Sb) compositions extending from 0 to 100%, grown by solid source molecular beam epitaxy (MBE), were used to investigate the evolution of interfacial chemistry under different passivation conditions. X-ray photoelectron spectroscopy (XPS) was used to determine the change in chemical state progression as a function of surface preclean and passivation, as well as the valence band offsets, conduction band offsets, energy band parameters, and bandgap of atomic layer deposited Al2O3 on GaAs1-ySby for the first time, which is further corroborated by X-ray analysis and cross-sectional transmission electron microscopy. Detailed XPS analysis revealed that the near midpoint composition, GaAs0.

View Article and Find Full Text PDF

The growth, structural and optical properties, and energy band alignments of tensile-strained germanium (ε-Ge) epilayers heterogeneously integrated on silicon (Si) were demonstrated for the first time. The tunable ε-Ge thin films were achieved using a composite linearly graded InxGa1-xAs/GaAs buffer architecture grown via solid source molecular beam epitaxy. High-resolution X-ray diffraction and micro-Raman spectroscopic analysis confirmed a pseudomorphic ε-Ge epitaxy whereby the degree of strain varied as a function of the In(x)Ga(1-x)As buffer indium alloy composition.

View Article and Find Full Text PDF

This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs) as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce to Ce which follow the rule of improving conductivity of solar cells through the hopping mechanism.

View Article and Find Full Text PDF

The magnetotransport properties of epitaxial Ge/AlAs heterostructures with different growth conditions and substrate architectures have been studied under ±9 T magnetic field and at 390 mK temperature. Systematic mobility measurements of germanium (Ge) epilayers grown on GaAs substrates at growth temperatures from 350 to 450 °C allow us to extract a precise growth window for device-quality Ge, corroborated by structural and morphological properties. Our results on Si substrate using a composite metamorphic AlAs/GaAs buffer at 400 °C Ge growth temperature, show that the Ge/AlAs system can be tailored to have a single carrier transport while keeping the charge solely in the Ge layer.

View Article and Find Full Text PDF

We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates.

View Article and Find Full Text PDF

SrTiO3 integration on crystallographic oriented (100), (110), and (111) epitaxial germanium (Ge) exhibits a potential for a new class of nanoscale transistors. Germanium is attractive due to its superior transport properties while SrTiO3 (STO) is promising due to its high relative permittivity, both being critical parameters for next-generation low-voltage and low-leakage metal-oxide semiconductor field-effect transistors. The sharp heterointerface between STO and each crystallographically oriented Ge layer, studied by cross-sectional transmission electron microscopy, as well as band offset parameters at each heterojunction offers a significant advancement for designing a new generation of ferroelectric-germanium based multifunctional devices.

View Article and Find Full Text PDF

We introduce a novel lead-free ferroelectric thin film (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BT-BCN) integrated on to HfO2 buffered Si for non-volatile memory (NVM) applications. Piezoelectric force microscopy (PFM), x-ray diffraction, and high resolution transmission electron microscopy were employed to establish the ferroelectricity in BT-BCN thin films.

View Article and Find Full Text PDF

Germanium-based materials and device architectures have recently appeared as exciting material systems for future low-power nanoscale transistors and photonic devices. Heterogeneous integration of germanium (Ge)-based materials on silicon (Si) using large bandgap buffer architectures could enable the monolithic integration of electronics and photonics. In this paper, we report on the heterogeneous integration of device-quality epitaxial Ge on Si using composite AlAs/GaAs large bandgap buffer, grown by molecular beam epitaxy that is suitable for fabricating low-power fin field-effect transistors required for continuing transistor miniaturization.

View Article and Find Full Text PDF

This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results qualitatively in a high concentration of Ce(3+) ions required to obtain high fluorescence efficiency in the down-conversion process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required for up-conversion.

View Article and Find Full Text PDF