Publications by authors named "Michael Christodoulou"

Ferroptosis, an iron-dependent form of regulated cell death, has recently emerged as a crucial process in the pathogenesis of , the causal agent of the devastating rice blast disease, which causes billions of dollars in annual losses. This mini review explores the potential of antioxidants in suppressing ferroptosis in to promote sustainable rice production, with significant implications for global food security and nutrition. We critically analyze the current literature on the mechanisms of ferroptosis in , including iron metabolism and lipid peroxidation, the role of different antioxidants in inhibiting this cell death pathway, and the potential applications of antioxidant-based strategies for the management of rice blast disease.

View Article and Find Full Text PDF
Article Synopsis
  • The rice-blast fungus is a big problem for rice farming all over the world.
  • Scientists found that a type of cell death called ferroptosis plays a role in how the fungus interacts with plants.
  • They discovered that certain compounds can stop the fungus from forming structures needed to infect rice, and adding iron can help restore this process.
View Article and Find Full Text PDF

Tauopathies such as Alzheimer's disease are characterized by aggregation and increased phosphorylation of the microtubule-associated protein tau. Tau's pathological changes are closely linked to neurodegeneration, making tau a prime candidate for intervention. We developed an approach to monitor pathological changes of aggregation-prone human tau in living neurons.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focused on synthesizing and testing various chalcone derivatives against high-grade serous ovarian cancer (HGSOC) cell lines, including OVCAR-3, OVSAHO, and KURAMOCHI.
  • * Results showed that three chalcone compounds were effective in killing cancer cells and promoting apoptosis, suggesting their potential as new treatments for ovarian cancer.
View Article and Find Full Text PDF

The conjugation of tetraphenylethylene (TPE) with podophyllotoxin, -desacetylthiocolchicine, and cabazitaxel through a sebacic acid linker led to the formation of fluorescent nanoparticles. Dynamic light scattering (DLS) and photoluminescence spectroscopy were used for the identification and characterization of the fluorescent nanoparticles. The biological evaluation was determined in three human ovarian (KURAMOCHI, OVCAR3, OVSAHO) and three human breast (MCF7, SKBR 3, and MDA-MB231) cancer cell lines.

View Article and Find Full Text PDF

The fulfilment of the European "Farm to Fork" strategy requires a drastic reduction in the use of "at risk" synthetic pesticides; this exposes vulnerable agricultural sectors-among which is the European risiculture-to the lack of efficient means for the management of devastating diseases, thus endangering food security. Therefore, novel scaffolds need to be identified for the synthesis of new and more environmentally friendly fungicides. In the present work, we employed our previously developed 3D model of cytochrome (cyt ) complex to perform a high-throughput virtual screening of two commercially available compound libraries.

View Article and Find Full Text PDF

Biofilms are the multicellular lifestyle of microorganisms and are present on potentially every type of biotic or abiotic surface. Detrimental biofilms are generally targeted with antimicrobial compounds. Phytochemicals at sub-lethal concentrations seem to be an exciting alternative strategy to control biofilms, as they are less likely to impose selective pressure leading to resistance.

View Article and Find Full Text PDF

Multi-target compounds have become increasingly important for the development of safer and more effective drug candidates. In this work, we devised a combined ligand-based and structure-based multi-target repurposing strategy and applied it to a series of hexahydrocyclopenta[c]quinoline compounds synthesized previously. The in silico analyses identified human Carbonic Anhydrases (hCA) and Estrogen Receptors (ER) as top scoring candidates for dual modulation.

View Article and Find Full Text PDF

Aggregation-induced emissive materials are gaining particular attention in the last decades due to their wide application in different fields, from optical devices to biomedicine. In this work, compounds having these kinds of properties, composed of tetraphenylethylene scaffold combined with fatty acids of different lengths, were synthesized and characterized. These molecules were found able to self-assemble into different supramolecular emissive structures depending on the chemical composition and water content.

View Article and Find Full Text PDF

The design of multi-target ligands has become an innovative approach for the identification of effective therapeutic treatments against complex diseases, such as cancer. Recent studies have demonstrated that the combined inhibition of Hsp90 and B-Raf provides synergistic effects against several types of cancers. Moreover, it has been reported that PDHK1, which presents an ATP-binding pocket similar to that of Hsp90, plays an important role in tumor initiation, maintenance and progression, participating also to the senescence process induced by B-Raf oncogenic proteins.

View Article and Find Full Text PDF

A library of monosubstituted chalcones (-) bearing electron-donating and electron-withdrawing groups on both aromatic rings were selected. The cell viability on human tumor cell lines was evaluated first. The compounds unable to induce detectable cytotoxicity (, , and ) were tested using the monoamine oxidase (MAO) activity assay.

View Article and Find Full Text PDF

The synthesis of a small library of 8-substituted 2-methyl-5,6,7,8-tetrahydroquinoline derivatives is presented. All the compounds were tested for their antiproliferative activity in non-cancer human dermal microvascular endothelial cells (HMEC-1) and cancer cells: human T-lymphocyte cells (CEM), human cervix carcinoma cells (HeLa), human dermal microvascular endothelial cells (HMEC-1), colorectal adenocarcinoma (HT-29), ovarian carcinoma (A2780), and biphasic mesothelioma (MSTO-211H). Compounds , , and , showing significant IC values against the whole panel of the selected cells, were further synthesized and tested as pure enantiomers in order to shed light on how their stereochemistry might impact on the related biological effect.

View Article and Find Full Text PDF

The identification of a highly sensitive method to check the delivery of administered nanodrugs into the tumor cells is a crucial step of preclinical studies aimed to develop new nanoformulated cures, since it allows the real therapeutic potential of these devices to be forecast. In the present work, the ability of an H-ferritin (HFn) nanocage, already investigated as a powerful tool for cancer therapy thanks to its ability to actively interact with the transferrin receptor 1, to act as an efficient probe for the monitoring of nanodrug delivery to tumors is demonstrated. The final formulation is a bioluminescent nanoparticle, where the luciferin probe is conjugated on nanoparticle surface by means of a disulfide containing linker (Luc-linker@HFn) which is subjected to glutathione-induced cyclization in tumor cell cytoplasm.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks as the fifth most common and the second deadliest cancer worldwide. HCC is extremely resistant to the conventional chemotherapeutics. Hence, it is vital to develop new treatment options.

View Article and Find Full Text PDF

In this study, a series of 20 chalcone derivatives was synthesized, and their antiproliferative activity was tested against the human T cell acute lymphoblastic leukemia-derived cell line, CCRF-CEM. On the basis of the structural features of the most active compounds, a new library of chalcone derivatives, according to the structure-activity relationship design, was synthesized, and their antiproliferative activity was tested against the same cancer cell line. Furthermore, four of these derivatives (compounds 3, 4, 8, 28), based on lower IC values (between 6.

View Article and Find Full Text PDF

4,4-Disubstituted 4-isoxazol-5-ones bearing a 1,4-naphthoquinone moiety undergo transformation into different types of benzoindolyl products depending on the different reaction conditions. A decarboxylative ring opening/ring closure promoted by catalytic [Ru(-cymene)Cl] yields benzo[]indole-4,9-diones. Alternatively, hydrogenation reactions provide the conversion of 4-(1,4-naphthoquinone)-substituted isoxazol-5-ones to benzo[]indole compounds, with the level of reduction depending on the substituents present on the ring.

View Article and Find Full Text PDF

Four different hybrid compounds have been efficiently synthesized by conjugation of deacetylthiocolchicine with pironetin-inspired derivatives. The modest bioactivity and the apparent absence of interaction with α-tubulin is explained by a posteriori in silico investigation, which suggests a relevant distance between the thiocolchicine binding site and the proper pocket on the α-tubulin. The modest activity on resistant cells suggested that the lipophilic nature of the linker used renders the resulting compounds better substrates for p-Gp efflux pumps.

View Article and Find Full Text PDF

3,3-Disubstituted oxindole derivatives bearing a nitrogen atom at the C-3 position have been synthesized starting from 3-alkyl oxindole through a metal free pathway. These derivatives have been tested in five human tumor cell lines (PC3, MCF7, SW620, MiaPaca2 and A375) and on primary cells (PBMCs) from healthy donors providing compound 6d showing a strong anticancer effect in all cancer lines on the low micromolar range.

View Article and Find Full Text PDF
Article Synopsis
  • - Trehalose, a disaccharide that can induce autophagy, has limited medical use due to its poor absorption and effectiveness in the body.
  • - To enhance its pharmacological properties, researchers created trehalose-based nanolipid conjugates by linking it with squalene and betulinic acid in specific ratios.
  • - The study details the methods used for creating these conjugates and their nano-assemblies, along with tests that showed their ability to promote autophagy in laboratory settings.
View Article and Find Full Text PDF

The chiral structure of antibiotic vancomycin (Van) was exploited as an innovative coordination sphere for the preparation of an IrCp* based hybrid catalysts. We found that Van is able to coordinate iridium (Ir(III)) and the complexation was demonstrated by several analytical techniques such as MALDI-TOF, UV, Circular dichroism (CD), Raman IR, and NMR. The hybrid system so obtained was employed in the Asymmetric Transfer Hydrogenation (ATH) of cyclic imines allowing to obtain a valuable 61% () in the asymmetric reduction of quinaldine .

View Article and Find Full Text PDF

A series of 2-phenyloxazoles bearing an amide group at position 4 were designed and synthesized for evaluation as potential inhibitors of human recombinant monoamine oxidases (hrMAOs). Results of kinetics experiments demonstrated that all compounds behave as competitive MAO inhibitors, with good selectivity toward the MAO-B isoform. The most potent and selective derivatives are characterized by inhibition constant (K ) values in the sub-micromolar range and a good selectivity index (K /K >50).

View Article and Find Full Text PDF

Based on hit-likeness and chemical diversity, a number of chalcones and chalcone-mimetic compounds were selected as putative Notch inhibitors. The evaluation of the antiproliferative effect combined with the inhibition of Notch1 expression in KOPTK1 cell line identified compound , featuring a tetrahydronaphthalene-based scaffold, as a new promising Notch-blocking agent.

View Article and Find Full Text PDF

The design and the synthesis of new self-assembling conjugates is reported. The target compounds are characterized by the presence of a self-immolative linker that secures a controlled release induced by lipase cleavage. 4-(1,2-Diphenylbut-1-en-1-yl)aniline is used as a self-assembling inducer and amino-thiocolchicine as prototype of drug.

View Article and Find Full Text PDF

Following the discovery of a type III allosteric modulator of cyclin-dependent kinase 2 (CDK2) characterized by a hexahydrocyclopenta[c]quinolone scaffold, three different series of its derivatives were synthesized and biologically evaluated. Docking of the synthesized compounds into the allosteric pocket of CDK2 allowed the elucidation of structure-activity relationships (SARs). Moreover, the compounds were tested on the wild-type epidermal growth factor receptor (EGFR) kinase domain (KD) and its clinically relevant T790M/L858R mutant form.

View Article and Find Full Text PDF

A chemo- and biocatalytic cascade approach was applied for the stereoselective synthesis of hydroxy ketones and the corresponding 1,3-diols. A new class of tridentate N,N,O ligands was used with copper(II) complexes for the asymmetric β-borylation of α,β-unsaturated compounds. The complex containing ligand emerged as the best performer, and it gave the organoborane derivatives with good values.

View Article and Find Full Text PDF