Publications by authors named "Michael Caterina"

Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) that display high sensitivity, rapid response kinetics, broad dynamic range, cell type-specific tuning, and an ability to detect PKA and ERK activity in primary sensory neurons. Moreover, co-expression of optically separable eKTRs for PKA and ERK revealed the kinetics of expected and unexpected crosstalk between PKA, ERK, protein kinase C, and calcium signaling pathways, demonstrating the utility of eKTRs for live cell monitoring of diverse and interacting signaling pathways.

View Article and Find Full Text PDF
Article Synopsis
  • SLURP1 and SLURP2 are proteins linked to a skin condition called Mal de Meleda (MdM), which causes painful thickening of skin on the palms and soles due to genetic mutations.
  • Mouse models lacking SLURP1 or SLURP2 exhibit similar skin thickening and show increased pain sensitivity to touch and temperature.
  • The study found that these mice have changes in skin immune response and nerve activity, suggesting they could help in developing treatments for pain related to this skin condition.
View Article and Find Full Text PDF

In this issue of Neuron, Yamada et al. show that fast excitatory neurotransmission by protons acting at acid-sensing ion channels (ASICs) mediates mechanical force-evoked signaling at the Merkel cell-neurite complex, contributing to mammalian tactile discrimination.

View Article and Find Full Text PDF

Proteasomes are critical for peripheral nervous system (PNS) function. Here, we investigate mammalian PNS proteasomes and reveal the presence of the neuronal membrane proteasome (NMP). We show that specific inhibition of the NMP on distal nerve fibers innervating the mouse hind paw leads to reduction in mechanical and pain sensitivity.

View Article and Find Full Text PDF

Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or collateral sprouting of neighboring uninjured afferents into denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received less attention. Here, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hindpaw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur.

View Article and Find Full Text PDF

Pain that accompanies deafferentation is one of the most mysterious and misunderstood medical conditions. Prevalence rates for the assorted conditions vary considerably but the most reliable estimates are greater than 50% for strokes involving the somatosensory system, brachial plexus avulsions, spinal cord injury, and limb amputation, with controversy surrounding the mechanistic contributions of deafferentation to ensuing neuropathic pain syndromes. Deafferentation pain has also been described for loss of other body parts (e.

View Article and Find Full Text PDF
Article Synopsis
  • Pachyonychia congenita (PC) is a rare genetic disorder characterized by abnormal skin cornification and is inherited in a dominant fashion.
  • It has attracted significant research attention over the past 20 years, largely due to efforts from the Pachyonychia Congenita Project, a patient support organization.
  • The article discusses ongoing research in PC, potential benefits for managing other diseases, and challenges facing these initiatives.
View Article and Find Full Text PDF

Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation.

View Article and Find Full Text PDF

Objectives: Chronic pain is primarily treated with pharmaceuticals, but the effects remain unsatisfactory. A promising alternative therapy is peripheral nerve stimulation (PNS), but it has been associated with suboptimal efficacy because its modulation mechanisms are not clear and the current therapies are primarily open loop (ie, manually adjusting the stimulation parameters). In this study, we developed a proof-of-concept computational modeling as the first step toward implementing closed-loop PNS in future biological studies.

View Article and Find Full Text PDF

Persistent arthritis pain after resolution of joint inflammation represents a huge health burden in patients with rheumatoid arthritis (RA). However, the underling mechanisms are poorly understood. We and other groups recently revealed that FcγRI, a key immune receptor, is functionally expressed in joint nociceptors.

View Article and Find Full Text PDF

Chronic pruritus is a prominent symptom of allergic contact dermatitis (ACD) and represents a huge unmet health problem. However, its underlying cellular and molecular mechanisms remain largely unexplored. TRPC3 is highly expressed in primary sensory neurons and has been implicated in peripheral sensitization induced by proinflammatory mediators.

View Article and Find Full Text PDF

Chronic joint pain is a major symptom in rheumatoid arthritis (RA) and its adequate treatment represents an unmet medical need. Noncoding microRNAs (miRNAs) have been implicated in the pathogenesis of RA as negative regulators of specific target mRNAs. Yet, their significance in RA pain is still not well defined.

View Article and Find Full Text PDF

Various pain therapies have been developed on the basis of the gate control theory of pain, which postulates that nonpainful sensory inputs mediated by large-diameter afferent fibers (Aβ-fibers) can attenuate noxious signals relayed to the brain. To date, this theory has focused only on neuronal mechanisms. Here, we identified an unprecedented function of astrocytes in the gating of nociceptive signals transmitted by neurokinin 1 receptor–positive (NK1R) projection neurons in the spinal cord.

View Article and Find Full Text PDF

Single-molecule fluorescence hybridization (smFISH) allows spatial mapping of gene expression. This protocol presents advances in smFISH fidelity and flexibility in intact murine sensory nervous system tissue. An approach using RNAscope probes allows multiplexing, enhanced target specificity, and immunohistochemistry compatibility.

View Article and Find Full Text PDF

Innocuous touch sensation is mediated by cutaneous low-threshold mechanoreceptors (LTMRs). Aβ slowly adapting type I (SAI) neurons constitute one LTMR subtype that forms synapse-like complexes with associated Merkel cells in the basal skin epidermis. Under healthy conditions, these complexes transduce indentation and pressure stimuli into Aβ SAI LTMR action potentials that are transmitted to the CNS, thereby contributing to tactile sensation.

View Article and Find Full Text PDF

Transient receptor potential vanilloid subtype 1 (TRPV1) is a nonselective cationic channel activated by painful stimuli such as capsaicin and noxious heat, and enriched in sensory neurons of the pain pathway. During inflammation, chemical mediators activate protein kinases (such as PKC) that phosphorylate TRPV1 and thereby enhance its function, with consequent increases in nociceptor sensitization. However, the causal relationships between TRPV1 phosphorylation and pathological pain remain unexplored.

View Article and Find Full Text PDF

The simple tripartite classification of sensory neurons as A-beta, A-delta, and C fibers fails to convey the complexity of the neurons that encode stimuli as diverse as the texture of a surface, the location of a pinprick, or the direction of hair movement as a breeze moves across the skin. It has also proven to be inadequate when investigating the molecular mechanisms underlying pain, which can encompass any combination of chemical, tactile, and thermal modalities. Beginning with a brief overview of visceral and sensory neuroanatomy, this review expands upon sensory innervation of the skin as a prime example of the heterogeneity and complexity of the somatosensory nervous system.

View Article and Find Full Text PDF

Schwannomatosis is a multiple tumor syndrome in which patients develop benign tumors along peripheral nerves throughout the body. The first symptom with which schwannomatosis patients often present, prior to discovery of tumors, is pain. This pain can be debilitating and is often inadequately alleviated by pharmacological approaches.

View Article and Find Full Text PDF

Although joint pain in rheumatoid arthritis (RA) is conventionally thought to result from inflammation, arthritis pain and joint inflammation are at least partially uncoupled. This suggests that additional pain mechanisms in RA remain to be explored. Here we show that FcγRI, an immune receptor for IgG immune complex (IgG-IC), is expressed in a subpopulation of joint sensory neurons and that, under naïve conditions, FcγRI crosslinking by IgG-IC directly activates the somata and peripheral terminals of these neurons to evoke acute joint hypernociception without obvious concurrent joint inflammation.

View Article and Find Full Text PDF

The perception of innocuous warmth is a sensory capability that facilitates thermoregulatory, social, hedonic, and even predatory functions. It has long been recognized that innocuous warmth perception is triggered by activation of a subpopulation of specially tuned peripheral thermosensory neurons. In addition, there is growing evidence that thermotransduction by nonneuronal cells, such as skin keratinocytes, might contribute to or modulate our thermosensory experience.

View Article and Find Full Text PDF

Resolution of inflammation is a critical process that is facilitated by specialized proresolving mediators (SPMs). In this issue, Bang et al. show that the G protein-coupled receptor GPR37 is a receptor for one such SPM, neuroprotectin D1.

View Article and Find Full Text PDF

Introduction: Epidermal keratinocytes are increasingly recognized as active participants in the sensory transduction of itch and pain, processes known to involve primary afferent glutamatergic neurons. However the role of keratinocyte glutamate signaling in sensory functioning is not fully understood. Here, we present the observation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid type glutamate receptors (AMPAR) in epidermal keratinocytes.

View Article and Find Full Text PDF

Ion channels of the Transient Receptor Potential (TRP) family mediate the influx of monovalent and/or divalent cations into cells in response to a host of chemical or physical stimuli. In the skin, TRP channels are expressed in many cell types, including keratinocytes, sensory neurons, melanocytes, and immune/inflammatory cells. Within these diverse cell types, TRP channels participate in physiological processes ranging from sensation to skin homeostasis.

View Article and Find Full Text PDF