We characterized the DC transport response of a diode embedded in a THz quantum cascade laser as the laser current was changed. The overall response is described by parallel contributions from the rectification of the laser field due to the non-linearity of the diode I-V and from thermally activated transport. Sudden jumps in the diode response when the laser changes from single mode to multi-mode operation, with no corresponding jumps in output power, suggest that the coupling between the diode and laser field depends on the spatial distribution of internal fields.
View Article and Find Full Text PDFUsing a microscopic theory based on the Maxwell-semiconductor Bloch equations, we investigate the feasibility of an optically pumped electrically driven terahertz (THz) quantum-cascade laser as a pathway to room-temperature THz generation. In optical conversion schemes the power conversion efficiency is limited by the Manley-Rowe relation. We circumvent this constraint by incorporating an electrical bias in a four level intersubband scheme, thereby allowing coherent recovery of the optical pump energy.
View Article and Find Full Text PDFWe demonstrate that a short hollow dielectric tube can act as a dielectric waveguide and transform the multimode, highly diverging terahertz quantum cascade laser beam into the lowest order dielectric waveguide hybrid mode, EH(11), which then couples efficiently to the free-space Gaussian mode, TEM(00). This simple approach should enable terahertz quantum cascade lasers to be employed in applications where a spatially coherent beam is required.
View Article and Find Full Text PDF