The human gut microbiota is a complex microbial ecosystem that contributes an important component towards the health of its host. This highly complex ecosystem has been underestimated in its importance until recently, when a realization of the enormous scope of gut microbiota function has been (and continues to be) revealed. One of the more striking of these discoveries is the finding that the gut microbiota and the brain are connected, and thus there is potential for the microbiota in the gut to influence behavior and mental health.
View Article and Find Full Text PDFThe zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut.
View Article and Find Full Text PDFEnterohemorrhagic Escherichia coli (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) adherence to epithelial cells results in the formation of actin pedestals. Pedestal formation requires the bacterial protein Tir, which is inserted into the epithelial cell plasma membrane by the type III secretion system.
View Article and Find Full Text PDFThe type III secreted protein Tir from Enterohemorrhagic Escherichia coli (EHEC O157:H7) plays a central role in adherence and pedestal formation during infection. Little is known about how Tir domains outside of the amino-terminus contribute to efficient Tir secretion and translocation. We found a 6 amino acid (519-524) carboxy-terminal region which was required for efficient Tir secretion and translocation.
View Article and Find Full Text PDF