Publications by authors named "Michael C Seeds"

Among brain tumors, glioblastoma (GBM) is very challenging to treat as chemotherapeutic drugs can only penetrate the brain to a limited extent due to the blood-brain barrier (BBB). Nanoparticles can be an attractive solution for the treatment of GBM as they can transport drugs across the BBB into the tumor. In this study, normal and GBM organoids comprising six brain cell types were developed and applied to study the uptake, BBB penetration, distribution, and efficacy of fluorescent, ultrasmall gold nanoparticles (AuTio-Dox-AF647s) conjugated with doxorubicin (Dox) and AlexaFluor-647-cadaverine (AF647) by confocal laser scanning microscopy (CLSM), using a mixture of dissolved doxorubicin and fluorescent AF647 molecules as a control.

View Article and Find Full Text PDF

Previous research suggests that group IIA-secreted phospholipase A (sPLA-IIA) plays a role in and predicts lethal COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal relationship between levels of several members of a family of sPLA isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA isoforms, sPLA-IIA, sPLA-V, sPLA-X, sPLA-IB, sPLA-IIC, and sPLA-XVI, increased over the first 7 ICU days in those who succumbed to the disease but attenuated over the same time period in survivors.

View Article and Find Full Text PDF

Introduction: Polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acid (HUFA) synthetic products and their signaling metabolites play vital roles in immunity, inflammation, and brain development/function. Frequency differences of variants within the fatty acid desaturase () gene cluster affect levels of HUFAs, their biologically active products, and numerous physiological phenotypes. Fundamental questions remain regarding the impact of this genetic variation on the health of Hispanic/Latino populations.

View Article and Find Full Text PDF

Previous research suggests that group IIA secreted phospholipase A (sPLA -IIA) plays a role in and predicts severe COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal (days 0, 3 and 7) relationship between the levels of several members of a family of sPLA isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA isoforms, sPLA -IIA, sPLA -V, sPLA -X, sPLA -IB, sPLA -IIC, and sPLA -XVI, increased over the first 7 ICU days in those who succumbed to the disease.

View Article and Find Full Text PDF

There is an urgent need to identify the cellular and molecular mechanisms responsible for severe COVID-19 that results in death. We initially performed both untargeted and targeted lipidomics as well as focused biochemical analyses of 127 plasma samples and found elevated metabolites associated with secreted phospholipase A2 (sPLA2) activity and mitochondrial dysfunction in patients with severe COVID-19. Deceased COVID-19 patients had higher levels of circulating, catalytically active sPLA2 group IIA (sPLA2-IIA), with a median value that was 9.

View Article and Find Full Text PDF

There is an urgent need to identify cellular and molecular mechanisms responsible for severe COVID-19 disease accompanied by multiple organ failure and high mortality rates. Here, we performed untargeted/targeted lipidomics and focused biochemistry on 127 patient plasma samples, and showed high levels of circulating, enzymatically active secreted phospholipase A Group IIA (sPLA -IIA) in severe and fatal COVID-19 disease compared with uninfected patients or mild illness. Machine learning demonstrated that sPLA -IIA effectively stratifies severe from fatal COVID-19 disease.

View Article and Find Full Text PDF

The mechanisms responsible for driving endogenous airway hyperresponsiveness (AHR) in the form of exercise-induced bronchoconstriction (EIB) are not fully understood. We examined alterations in airway phospholipid hydrolysis, surfactant degradation, and lipid mediator release in relation to AHR severity and changes induced by exercise challenge. Paired induced sputum ( = 18) and bronchoalveolar lavage (BAL) fluid ( = 11) were obtained before and after exercise challenge in asthmatic subjects.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is an efficient barrier for molecules and drugs. Multicellular 3D spheroids display reproducible BBB features and functions. The spheroids used here were composed of six brain cell types: Astrocytes, pericytes, endothelial cells, microglia cells, oligodendrocytes, and neurons.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most common male cancer and the second leading cause of cancer death in United States men. Controversy continues over the effectiveness of prostate-specific antigen (PSA) for distinguishing aggressive from indolent PCa. There is a critical need for more specific and sensitive biomarkers to detect and distinguish low- versus high-risk PCa cases.

View Article and Find Full Text PDF

Humans have undergone intense evolutionary selection to optimize their capacity to generate necessary quantities of long chain (LC-) polyunsaturated fatty acid (PUFA)-containing lipids. To better understand the impact of genetic variation within a locus of three FADS genes (FADS1, FADS2, and FADS3) on a diverse family of lipids, we examined the associations of 247 lipid metabolites (including four major classes of LC-PUFA-containing molecules and signaling molecules) with common and low-frequency genetic variants located within the FADS locus. Genetic variation in the FADS locus was strongly associated (p < 1.

View Article and Find Full Text PDF

Background: Unexplained heterogeneity in clinical trials has resulted in questions regarding the effectiveness of ɣ-linolenic acid (GLA)-containing botanical oil supplements. This heterogeneity may be explained by genetic variation within the fatty acid desaturase (FADS) gene cluster that is associated with circulating and tissue concentrations of arachidonic acid (ARA) and dihomo-ɣ-linolenic acid (DGLA), both of which may be synthesized from GLA and result in proinflammatory and anti-inflammatory metabolites, respectively.

Objectives: The objective of this study was to prospectively compare the capacity of a non-Hispanic white cohort, stratified by FADS genotype at the key single-nucleotide polymorphism (SNP) rs174537, to metabolize 18-carbon omega-6 (n-6) PUFAs in borage oil (BO) and soybean oil (SO) to GLA, DGLA, and ARA.

View Article and Find Full Text PDF

Omega-6 (n-6) and omega-3 (n-3) long (≥ 20 carbon) chain polyunsaturated fatty acids (LC-PUFAs) play a critical role in human health and disease. Biosynthesis of LC-PUFAs from dietary 18 carbon PUFAs in tissues such as the liver is highly associated with genetic variation within the fatty acid desaturase (FADS) gene cluster, containing FADS1 and FADS2 that encode the rate-limiting desaturation enzymes in the LC-PUFA biosynthesis pathway. However, the molecular mechanisms by which FADS genetic variants affect LC-PUFA biosynthesis, and in which tissues, are unclear.

View Article and Find Full Text PDF

Background: Dietary essential omega-6 (-6) and omega-3 (-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by and genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These -6 and -3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes.

Methods: This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene-diet interactions that may lead to excess levels of -6 LC-PUFAs and deficiencies of -3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize -3 LC-PUFA supplementation for individuals and populations.

View Article and Find Full Text PDF

Genetic variants near and within the fatty acid desaturase (FADS) cluster are associated with polyunsaturated fatty acid (PUFA) biosynthesis, levels of several disease biomarkers and risk of human disease. However, determining the functional mechanisms by which these genetic variants impact PUFA levels remains a challenge. Utilizing an Illumina 450K array, we previously reported strong allele-specific methylation (ASM) associations (p = 2.

View Article and Find Full Text PDF

Background: In vitro and experimental animal studies have demonstrated that high levels of omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and high ratios of n-6 to omega-3 (n-3) PUFAs are strongly associated with the development and progression of prostate cancer (PCA). However, epidemiological studies in humans have demonstrated inconsistent findings linking dietary PUFAs and PCA risk. We hypothesize that genetic and epigenetic variations within the fatty acid desaturase (FADS) gene cluster produce gene-diet interactions that may explain these disparate findings.

View Article and Find Full Text PDF

Deficiencies in omega-3 (n-3) long chain polyunsaturated fatty acids (LC-PUFAs) and increases in the ratio of omega-6 (n-6) to n-3 LC-PUFAs in brain tissues and blood components have been associated with psychiatric and developmental disorders. Most studies have focused on n-3 LC-PUFA accumulation in the brain from birth until 2years of age, well before the symptomatic onset of such disorders. The current study addresses changes that occur in childhood and adolescence.

View Article and Find Full Text PDF

The "modern western" diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health.

View Article and Find Full Text PDF

Levels of omega-6 (n-6) and omega-3 (n-3), long chain polyunsaturated fatty acids (LcPUFAs) such as arachidonic acid (AA; 20:4, n-6), eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3) impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1) are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs) such as LA (18:2, n-6) to AA and α-linolenic acid (ALA, 18:3, n-3) to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids.

View Article and Find Full Text PDF

Introduction: Secretory phospholipases A2 (sPLA2) hydrolyze phospholipids in cell membranes and extracellular structures such as pulmonary surfactant. This study tests the hypothesis that sPLA2 are elevated in human lungs during acute respiratory distress syndrome (ARDS) and that sPLA2 levels are associated with surfactant injury by hydrolysis of surfactant phospholipids.

Methods: Bronchoalveolar lavage (BAL) fluid was obtained from 18 patients with early ARDS (<72 hours) and compared with samples from 10 healthy volunteers.

View Article and Find Full Text PDF

Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A(2) (sPLA(2)) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA(2) exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA(2)-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA(2)-mediated surfactant hydrolysis.

View Article and Find Full Text PDF

Although the role of arachidonic acid (AA) metabolism to eicosanoids has been well established in allergy and asthma, recent studies in neoplastic cells have revealed that AA remodeling through phospholipids impacts cell survival. This study tests the hypothesis that regulation of AA/phospholipid-remodeling enzymes, cytosolic phospholipase A(2) alpha(cPLA(2)-alpha, gIValphaPLA(2)) and CoA-independent transacylase (CoA-IT), provides a mechanism for altered eosinophil survival during allergic asthma. In vitro incubation of human eosinophils (from donors without asthma) with IL-5 markedly increased cell survival, induced gIValphaPLA(2) phosphorylation, and increased both gIValphaPLA(2) and CoA-IT activity.

View Article and Find Full Text PDF

Changes in diet over the past century have markedly altered the consumption of fatty acids. The dramatic increase in the ingestion of saturated and n-6 fatty acids and concomitant decrease in n-3 fatty acids are thought to be a major driver of the increase in the incidence of inflammatory diseases such as asthma, allergy, and atherosclerosis. The central objective of the Center for Botanical Lipids at Wake Forest University School of Medicine and the Brigham and Women's Hospital is to delineate the mechanisms by which fatty acid-based dietary supplements inhibit inflammation leading to chronic human diseases such as cardiovascular disease and asthma.

View Article and Find Full Text PDF

Calgranulins are a family of powerful chemoattractants, which have been implicated as biomarkers in inflammatory diseases. To determine how different respiratory diseases affect the expression of calgranulins, we measured the expression of S100A8/A9 and S100A12 in bronchoalveolar lavage fluid (BALF) of acute respiratory distress syndrome (ARDS) patients and healthy volunteers by ELISA. Analysis of calgranulin expression revealed a high level of S100A12 in the lavages of patients suffering from ARDS compared to controls (p<0.

View Article and Find Full Text PDF

In the absence of activation signals, circulating human neutrophils and eosinophils undergo spontaneous apoptosis. The glucocorticoid dexamethasone (Dex) accelerates apoptosis in inflammatory cells such as eosinophils, but uniquely delays neutrophil apoptosis. Corresponding to the opposite effects of Dex on granulocyte apoptosis, we demonstrate that in neutrophils and eosinophils Dex oppositely affects expression of the anti-apoptotic Bcl-2 family protein Mcl-1L.

View Article and Find Full Text PDF