The ability to predict and characterize distributions of reactivities over families and even superfamilies of proteins opens the door to an array of analyses regarding functional evolution. In this article, insights into functional evolution in the Kazal inhibitor superfamily are gained by analyzing and comparing predicted association free energy distributions against six serine proteinases, over a number of groups of inhibitors: all possible Kazal inhibitors, natural avian ovomucoid first and third domains, and sets of Kazal inhibitors with statistically weighted combinations of residues. The results indicate that, despite the great hypervariability of residues in the 10 proteinase-binding positions, avian ovomucoid third domains evolved to inhibit enzymes similar to the six enzymes selected, whereas the orthologous first domains are not inhibitors of these enzymes on purpose.
View Article and Find Full Text PDFSequence-reactivity space is defined by the relationships between amino acid type choices at some residue positions in a protein and the reactivities of the resulting variants. We are studying Kazal superfamily serine proteinase inhibitors, under substitution of any combination of residue types at 10 binding-region positions. Reactivities are defined by the standard free energy of association for an inhibitor against an enzyme, and we are interested in both the strength (the free energy value) and specificity (relative free energy values for one inhibitor against different enzymes).
View Article and Find Full Text PDF