Biochim Biophys Acta
March 2005
Acetyl-CoA carboxylase (ACC) plays a fundamental role in fatty acid metabolism. The reaction product, malonyl-CoA, is both an intermediate in the de novo synthesis of long-chain fatty acids and also a substrate for distinct fatty acyl-CoA elongation enzymes. In metazoans, which have evolved energy storage tissues to fuel locomotion and to survive periods of starvation, energy charge sensing at the level of the individual cell plays a role in fuel selection and metabolic orchestration between tissues.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
June 2005
We have developed a mouse model of diet-induced obesity that shows numerous abnormalities relating to mammary gland function. Animals ate approximately 40% more calories when offered a high-fat diet and gained weight at three times the rate of controls. They exhibited reduced conception rates, increased peripartum pup mortality, and impaired lactogenesis.
View Article and Find Full Text PDFThe mammalian gene (ACACA) encoding acetyl-CoA carboxylase-alpha, a key regulatory enzyme of fatty acid synthesis, is transcribed from multiple promoters. We have delineated the 5' boundary of ACACA in four species (human, mouse, rat, and ovine). The 5' end of ACACA is located within a 600- to 700-bp CpG island encompassing a bidirectional promoter shared with the divergently oriented TADA2L, which encodes a component of chromatin-modifying complexes.
View Article and Find Full Text PDFmRNA encoding a variant acetyl-CoA carboxylase (ACC)-alpha isozyme, transcribed from a downstream promoter, PIII, was detected in human tissues. Such exon 5A-containing transcripts (E5A-mRNA) encode ACC-alpha with a distinct N-terminus, with 15/17 residues identical to those encoded by the ovine mRNA. In the current study we used antisera directed against the E5A N-terminus to verify that ovine E5A translates are present in tissues consistent with the distribution of E5A-mRNA.
View Article and Find Full Text PDFACC-alpha (acetyl-CoA carboxylase-alpha), a key regulator of fatty-acid metabolism, is encoded by mRNAs transcribed from three promoters, PI, PII and PIII, in the ovine genome. Enhanced expression of transcripts encoded by PIII in mammary gland during lactation is associated with alterations in chromatin structure that result in the detection of two DNase I hypersensitive sites, upstream of the start site. The most proximal site, located between -190 and -10, is characterized by the presence of an inverted-CCAAT box, C2 at -167, and E-boxes, E1 and E2, at -151 and -46.
View Article and Find Full Text PDFBrain Res Gene Expr Patterns
October 2002
Malonyl-CoA acts a fuel sensor in the pancreas, liver and muscle. Similarly, malonyl-CoA is implicated in satiety regulation in the brain. Expression of genes encoding enzymes implicated in regulation of malonyl-CoA levels was examined in murine brain.
View Article and Find Full Text PDFThe heterozygous prolactin (PRL) receptor (PRLR(+/-)) mouse fails to develop a fully functional mammary gland at the end of the first pregnancy and shows markedly impaired lobuloalveolar development and milk secretion in young females. PRL and GH, acting through the IGF system, have interactive effects to enhance epithelial cell survival. Thus, we propose that a reduction in the expression of the PRLR may lead to increased IGFBP-5 expression (proapoptotic) and that GH may rescue mammary development by increasing IGF-I, an important mitogen and survival factor for the mammary epithelium.
View Article and Find Full Text PDFWe have previously demonstrated that IGFBP-5 production by mammary epithelial cells increases dramatically during involution of the mammary gland. To demonstrate a causal relationship between IGFBP-5 and cell death we created transgenic mice expressing IGFBP-5 in the mammary gland using a mammary-specific promoter, beta-lactoglobulin. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy.
View Article and Find Full Text PDF