The copy number of a plasmid is linked to its functionality, yet there have been few attempts to optimize higher-copy-number mutants for use across diverse origins of replication in different hosts. We use a high-throughput growth-coupled selection assay and a directed evolution approach to rapidly identify origin of replication mutations that influence copy number and screen for mutants that improve Agrobacterium-mediated transformation (AMT) efficiency. By introducing these mutations into binary vectors within the plasmid backbone used for AMT, we observe improved transient transformation of Nicotiana benthamiana in four diverse tested origins (pVS1, RK2, pSa and BBR1).
View Article and Find Full Text PDFHigher plants generate new leaves from shoot meristems throughout their vegetative lifespan. The tempo of leaf initiation is dynamically regulated by physiological cues, but little is known about the underlying genetic signaling pathways that coordinate this rate. Two maize (Zea mays) mutants, terminal ear1 (te1) and phytochrome B1;phytochrome B2 (phyB1;phyB2), oppositely affect leaf initiation rates and total leaf number at the flowering time: te1 mutants make leaves faster whereas phyB1;phyB2 mutants make leaves slower than wild-type plants.
View Article and Find Full Text PDFNarrow odd dwarf (nod) and Liguleless narrow (Lgn) are pleiotropic maize mutants that both encode plasma membrane proteins, cause similar developmental patterning defects, and constitutively induce stress signaling pathways. To investigate how these mutants coordinate maize development and physiology, we screened for protein interactors of NOD by affinity purification. LGN was identified by this screen as a strong candidate interactor, and we confirmed the NOD-LGN molecular interaction through orthogonal experiments.
View Article and Find Full Text PDFTARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic Ser/Thr protein kinase that coordinates growth and metabolism with nutrient availability. We conducted a medium-throughput functional genetic screen to discover essential genes that promote TOR activity in plants, and identified a critical regulatory enzyme, cytosolic phosphoribosyl pyrophosphate (PRPP) synthetase (PRS4). PRS4 synthesizes cytosolic PRPP, a key upstream metabolite in nucleotide synthesis and salvage pathways.
View Article and Find Full Text PDF