Ultrafast laser excitation provides a means to transiently realize long-range ordered electronic states of matter that are hidden in thermal equilibrium. Recently, this approach has unveiled a variety of thermally inaccessible ordered states in strongly correlated materials, including charge density wave, ferroelectric, magnetic, and intertwined charge-orbital ordered states. However, more exotic hidden states exhibiting higher multipolar ordering remain elusive owing to the challenge of directly manipulating and detecting them with light.
View Article and Find Full Text PDFThe Brillouin zone of the clean Weyl semimetal contains points at which the density of states (DOS) vanishes. Previous work suggested that below a certain critical concentration of impurities this feature is preserved including in the presence of disorder. This result got criticized for its neglect of rare disorder fluctuations which might bind quantum states and hence generate a finite DOS.
View Article and Find Full Text PDFWe present a functional renormalization group approach for the active to inactive phase transition in directed percolation-type systems, in which the transition is approached from the active, finite density phase. By expanding the effective potential for the density field around its minimum, we obtain a background field action functional, which serves as a starting point for the functional renormalization group approach. Due to the presence of the background field, the corresponding nonperturbative flow equations yield remarkably good estimates for the critical exponents of the directed percolation universality class, even in low dimensions.
View Article and Find Full Text PDFStochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition.
View Article and Find Full Text PDFWe consider the time-reversal-invariant Hofstadter-Hubbard model which can be realized in cold-atom experiments. In these experiments, an additional staggered potential and an artificial Rashba-type spin-orbit coupling are available. Without interactions, the system exhibits various phases such as topological and normal insulator, metal as well as semi-metal phases with two or even more Dirac cones.
View Article and Find Full Text PDF