Although chemotherapy induces complete remission in the majority of acute myeloid leukemia (AML) patients, many face a relapse. This relapse is caused by survival of chemotherapy-resistant leukemia (stem) cells (measurable residual disease; MRD). Here, we demonstrate that the anthracycline doxorubicin epigenetically reprograms leukemia cells by inducing histone 3 lysine 27 (H3K27) and H3K4 tri-methylation.
View Article and Find Full Text PDFPeripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with poor prognosis. Up to 30% of PTCL lack distinctive features and are classified as PTCL, not otherwise specified (PTCL-NOS). To further improve our understanding of the genetic landscape and biology of PTCL-NOS, we perform RNA-sequencing of 18 cases and validate results in an independent cohort of 37 PTCL cases.
View Article and Find Full Text PDFThe polycomb repressive complex 2, with core components EZH2, SUZ12, and EED, is responsible for writing histone 3 lysine 27 trimethylation histone marks associated with gene repression. Analysis of sequence data from 419 T-cell acute lymphoblastic leukemia (T-ALL) cases demonstrated a significant association between SUZ12 and JAK3 mutations. Here we show that CRISPR/Cas9-mediated inactivation of Suz12 cooperates with mutant JAK3 to drive T-cell transformation and T-ALL development.
View Article and Find Full Text PDFThe NUP214-ABL1 fusion is a constitutively activated tyrosine kinase that is significantly associated with overexpression of the TLX1 and TLX3 transcription factors in T cell acute lymphoblastic leukemia (T-ALL). Here we show that NUP214-ABL1 cooperates with TLX1 in driving T-ALL development using a transgenic mouse model and human T-ALL cells. Using integrated ChIP-sequencing, ATAC-sequencing, and RNA-sequencing data, we demonstrate that TLX1 and STAT5, the downstream effector of NUP214-ABL1, co-bind poised enhancer regions, and cooperatively activate the expression of key proto-oncogenes such as MYC and BCL2.
View Article and Find Full Text PDFNext-generation sequencing has provided a detailed overview of the various genomic lesions implicated in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL). Typically, 10-20 protein-altering lesions are found in T-ALL cells at diagnosis. However, it is currently unclear in which order these mutations are acquired and in which progenitor cells this is initiated.
View Article and Find Full Text PDFSeveral questions about the role of the oxygen sensor prolyl-hydroxylase 2 (PHD2) in cancer have not been addressed. First, the role of PHD2 in metastasis has not been studied in a spontaneous tumor model. Here, we show that global PHD2 haplodeficiency reduced metastasis without affecting tumor growth.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases.
View Article and Find Full Text PDF