Publications by authors named "Michael Brehm"

Oncogenic programs regulate the proliferation and maintenance of cancer stem cells, and can define pharmacologic dependencies. In acute myeloid leukemia (AML) with the chromosome inversion 16 (inv(16)), the fusion oncoprotein CBFβ::MYH11 regulates pathways associated with leukemia stem cell activity. Here we demonstrate that expression of Neuropilin-1 (NRP1) is regulated by the fusion oncoprotein, and promotes AML expansion.

View Article and Find Full Text PDF

The high rate of recurrence after radiation therapy in triple-negative breast cancer (TNBC) indicates that novel approaches and targets are needed to enhance radiosensitivity. Here, we report that neuropilin-2 (NRP2), a receptor for vascular endothelial growth factor (VEGF) that is enriched on subpopulations of TNBC cells with stem cell properties, is an effective therapeutic target for sensitizing TNBC to radiotherapy. Specifically, VEGF/NRP2 signaling induces nitric oxide synthase 2 (NOS2) transcription by a mechanism dependent on Gli1.

View Article and Find Full Text PDF

Background: In order for cancers to progress, they must evade elimination by CD8 T cells or other immune mechanisms. CD8 T cells recognize and kill tumor cells that display immunogenic tumor peptides bound to MHC I molecules. One of the ways that cancers can escape such killing is by reducing expression of MHC I molecules, and loss of MHC I is frequently observed in tumors.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis.

View Article and Find Full Text PDF

Omnipresent suppressive myeloid populations in the tumor microenvironment limit the efficacy of T-cell-directed immunotherapies, become more inhibitory after administration of T-cell checkpoint inhibitors, and are overall associated with worse survival of cancer patients. In early clinical trials, positive outcomes have been demonstrated for therapies aimed at repolarizing suppressive myeloid populations in the tumor microenvironment. We have previously described the key role of P-selectin glycoprotein ligand-1 (PSGL-1) in maintaining an inhibitory state of tumor-associated macrophages (TAMs), most of which express high levels of PSGL-1.

View Article and Find Full Text PDF

Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1/LMO mouse models, double negative-3 (DN3; CD4CD8CD25CD44) thymic progenitors harbored L-ICs.

View Article and Find Full Text PDF

Unlabelled: serovars Typhi and Paratyphi cause a prolonged illness known as enteric fever, whereas other serovars cause acute gastroenteritis. Mechanisms responsible for the divergent clinical manifestations of nontyphoidal and enteric fever infections have remained elusive. Here, we show that .

View Article and Find Full Text PDF

Background: Facioscapulohumeral muscular dystrophy (FSHD) disease progression is associated with muscle inflammation, although its role in FSHD muscle pathology is unknown.

Methods: We have developed a novel humanized mouse strain, NSG-SGM3-W41, that supports the co- engraftment of human hematopoietic stem cells (HSCs) and muscle myoblasts as an experimental model to investigate the role of innate immunity in FSHD muscle pathology.

Results: The NSG-SGM3-W41 mouse supports the selective expansion of human innate immune cell lineages following engraftment of human HSCs and the co-engraftment and differentiation of patient-derived FSHD or control muscle myoblasts.

View Article and Find Full Text PDF

Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing.

View Article and Find Full Text PDF

Physical activity is a modifiable lifestyle factor that is associated with a decreased risk for the development of breast cancer. While the exact mechanisms for the reduction in cancer risk due to physical activity are largely unknown, it is postulated that the biological reduction in cancer risk is driven by improvements in inflammation and immune function with exercise. Hematopoietic stem cells (HSCs) are the progenitor for all of the cells of the immune system and are involved in cancer immunosurveillance through differentiation into cytotoxic cell population.

View Article and Find Full Text PDF

Unlabelled: The immune suppressive microenvironment is a major culprit for difficult-to-treat solid cancers. Particularly, inhibitory tumor-associated macrophages (TAM) define the resistant nature of the tumor milieu. To define tumor-enabling mechanisms of TAMs, we analyzed molecular clinical datasets correlating cell surface receptors with the TAM infiltrate.

View Article and Find Full Text PDF

Approaches to study human pharyngeal foregut endoderm-a developmental intermediate that is linked to various human syndromes involving pharynx development and organogenesis of tissues such as thymus, parathyroid, and thyroid-have been hampered by scarcity of tissue access and cellular models. We present an efficient stepwise differentiation method to generate human pharyngeal foregut endoderm from pluripotent stem cells. We determine dose and temporal requirements of signaling pathway engagement for optimized differentiation and characterize the differentiation products on cellular and integrated molecular level.

View Article and Find Full Text PDF

Aging and metabolic diseases are accompanied by systemic inflammation, but the mechanisms that induce this state are not known. We developed a human bone-marrow organoid system to explore mechanisms underlying metabolic-disease associated systemic inflammation. We find that a distinct type of hematopoietic stem cell (HSC) develops in the adipose-rich, yellow bone marrow, which is known to gradually replace the hematopoietic red marrow as we age and during metabolic disease.

View Article and Find Full Text PDF

Purpose: Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis.

Experimental Design: Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors.

View Article and Find Full Text PDF

γδ T cells are important tissue-resident, innate T cells that are critical for tissue homeostasis. γδ cells are associated with positive prognosis in most tumors; however, little is known about their heterogeneity in human cancers. Here, we phenotyped innate and adaptive cells in human colorectal (CRC) and endometrial cancer.

View Article and Find Full Text PDF

Humanized mouse models, created via transplantation of human hematopoietic tissues into immune-deficient mice, support a number of research applications, including transplantation immunology, virology and oncology studies. As an alternative to the bone marrow, liver, thymus humanized mouse, which uses fetal tissues for generating a chimeric human immune system, the NeoThy humanized mouse uses nonfetal tissue sources. Specifically, the NeoThy model incorporates hematopoietic stem and progenitor cells from umbilical cord blood (UCB) as well as thymus tissue that is typically discarded as medical waste during neonatal cardiac surgeries.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) are a diverse population of cells that include NK cells and contribute to tissue homeostasis and repair, inflammation, and provide protection from infection. The interplay between human blood ILCs, as well as their responses to HIV-1 infection, remains poorly understood. This study used transcriptional and chromatin profiling to explore these questions.

View Article and Find Full Text PDF

Biomedical devices comprise a major component of modern medicine, however immune-mediated fibrosis and rejection can limit their function over time. Here, we describe a humanized mouse model that recapitulates fibrosis following biomaterial implantation. Cellular and cytokine responses to multiple biomaterials were evaluated across different implant sites.

View Article and Find Full Text PDF

Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treatment of several cancer indications. However, these therapies can result in the development of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues.

View Article and Find Full Text PDF

Prostate cancers are largely unresponsive to immune checkpoint inhibitors (ICIs), and there is strong evidence that programmed death-ligand 1 (PD-L1) expression itself must be inhibited to activate antitumor immunity. Here, we report that neuropilin-2 (NRP2), which functions as a vascular endothelial growth factor (VEGF) receptor on tumor cells, is an attractive target to activate antitumor immunity in prostate cancer because VEGF-NRP2 signaling sustains PD-L1 expression. depletion increased T cell activation in vitro.

View Article and Find Full Text PDF

Endemic Burkitt lymphoma (BL) is a childhood cancer in sub-Saharan Africa characterized by Epstein-Barr virus and malaria-associated aberrant B-cell activation and chromosomal translocation. Survival rates hover at 50% after conventional chemotherapies; therefore, clinically relevant models are necessary to test additional therapies. Hence, we established five patient-derived BL tumor cell lines and corresponding NSG-BL avatar mouse models.

View Article and Find Full Text PDF

Genetic susceptibility to type 1 diabetes is associated with homozygous expression of major histocompatibility complex class II alleles that carry specific beta chain polymorphisms. Why heterozygous expression of these major histocompatibility complex class II alleles does not confer a similar predisposition is unresolved. Using a nonobese diabetic mouse model, here we show that heterozygous expression of the type 1 diabetes-protective allele I-A β56P/57D induces negative selection to the I-A-restricted T cell repertoire, including beta-islet-specific CD4 T cells.

View Article and Find Full Text PDF

Agents that induce inflammation have been used since the 18th century for the treatment of cancer. The inflammation induced by agents such as Toll-like receptor agonists is thought to stimulate tumor-specific immunity in patients and augment control of tumor burden. While NOD-scid IL2rγnull mice lack murine adaptive immunity (T cells and B cells), these mice maintain a residual murine innate immune system that responds to Toll-like receptor agonists.

View Article and Find Full Text PDF

Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited.

View Article and Find Full Text PDF

Mast cells (MC) are key drivers of allergic and inflammatory diseases. Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 is an immunoregulatory receptor found on MCs. While it is recognized that engaging Siglecs with antibodies mediates inhibition across immune cells, the mechanisms that govern this agonism are not understood.

View Article and Find Full Text PDF