Cancer stem-like cells (CSC) are responsible for tumor progression, chemoresistance, recurrence, and poor outcomes in many cancers, making them critical research and therapeutic targets. One of the critical components potentiating CSC chemoresistance is the interactions between CSC and the surrounding cells in the tumor microenvironment. Our lab has developed several 3D co-culture models to study ovarian CSC interactions with stromal or immune cells found in ovarian tumor microenvironments.
View Article and Find Full Text PDFIntractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient.
View Article and Find Full Text PDFBACKGROUNDEpidemiologic studies suggest that metformin has antitumor effects. Laboratory studies indicate metformin impacts cancer stem-like cells (CSCs). As part of a phase II trial, we evaluated the impact of metformin on CSC number and on carcinoma-associated mesenchymal stem cells (CA-MSCs) and clinical outcomes in nondiabetic patients with advanced-stage epithelial ovarian cancer (EOC).
View Article and Find Full Text PDFIn this protocol, we outline the procedure for generation of tumor spheroids within 384-well hanging droplets to allow for high-throughput screening of anti-cancer therapeutics in a physiologically representative microenvironment. We outline the formation of patient derived cancer stem cell spheroids, as well as, the manipulation of these spheroids for thorough analysis following drug treatment. Specifically, we describe collection of spheroid morphology, proliferation, viability, drug toxicity, cell phenotype and cell localization data.
View Article and Find Full Text PDFOvarian cancer is an extremely lethal gynecologic disease; with the high-grade serous subtype predominantly associated with poor survival rates. Lack of early diagnostic biomarkers and prevalence of post-treatment recurrence, present substantial challenges in treating ovarian cancers. These cancers are also characterized by a high degree of heterogeneity and protracted metastasis, further complicating treatment.
View Article and Find Full Text PDFUnlabelled: Intraperitoneal dissemination of ovarian cancers is preceded by the development of chemoresistant tumors with malignant ascites. Despite the high levels of chemoresistance and relapse observed in ovarian cancers, there are no in vitro models to understand the development of chemoresistance in situ.
Method: We describe a highly integrated approach to establish an in vitro model of chemoresistance and stemness in ovarian cancer, using the 3D hanging drop spheroid platform.
Tumors are not merely cancerous cells that undergo mindless proliferation. Rather, they are highly organized and interconnected organ systems. Tumor cells reside in complex microenvironments in which they are subjected to a variety of physical and chemical stimuli that influence cell behavior and ultimately the progression and maintenance of the tumor.
View Article and Find Full Text PDFChemoresistant ovarian cancers grow in suspension within the ascites fluid. To screen the effect of chemotherapeutics and biologics on resistant ovarian cancers with a personalized basis, we developed a 3D hanging drop spheroid platform. We initiated spheroids with primary aldehyde dehydrogenase-positive (ALDH) CD133 ovarian cancer stem cells (OvCSC) from different patient samples and demonstrated that stem cell progeny from harvested spheroids was similar to the primary tumor.
View Article and Find Full Text PDFA laser-based hydrogel degradation technique is developed that allows for local control over hydrogel porosity, fabrication of 3D vascular-derived, biomimetic, hydrogel-embedded microfluidic networks, and generation of two intertwining, yet independent, microfluidic networks in a single construct.
View Article and Find Full Text PDF