Publications by authors named "Michael Brauchle"

We determined two crystal structures of the chemokine receptor CCR2A in complex with the orthosteric antagonist MK-0812. Full-length CCR2A, stabilized by rubredoxin and a series of five mutations were resolved at 3.3 Å.

View Article and Find Full Text PDF

Homeodomain transcription factors are involved in many developmental processes across animals and have been linked to body plan evolution. Detailed classifications of these proteins identified 11 distinct classes of homeodomain proteins in animal genomes, each harboring specific sequence composition and protein domains. Although humans contain the full set of classes, Drosophila melanogaster and Caenorhabditis elegans each lack one specific class.

View Article and Find Full Text PDF

The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown.

View Article and Find Full Text PDF

Protein-protein interactions are crucial for cellular homeostasis and play important roles in the dynamic execution of biological processes. While antibodies represent a well-established tool to study protein interactions of extracellular domains and secreted proteins, as well as in fixed and permeabilized cells, they usually cannot be functionally expressed in the cytoplasm of living cells. Non-immunoglobulin protein-binding scaffolds have been identified that also function intracellularly and are now being engineered for synthetic biology applications.

View Article and Find Full Text PDF

Histone modifications play an important role in chromatin organization and gene regulation, and their interpretation is referred to as epigenetic control. The methylation levels of several lysine residues in histone tails are tightly controlled, and JmjC domain-containing proteins are one class of broadly expressed enzymes catalyzing methyl group removal. However, several JmjC proteins remain uncharacterized, gaps persist in understanding substrate recognition, and the integration of JmjC proteins into signaling pathways is just emerging.

View Article and Find Full Text PDF

The cell-biological events that guide early-embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C.

View Article and Find Full Text PDF

Classical studies comparing developing embryos have suggested the importance of modified cell biological processes in the evolution of new phenotypes. Here, I revisit this connection focusing on embryonic development, in particular nematode embryogenesis. I compare phenotypic differences in nematode embryogenesis in two basic cell biological processes, the cell cycle and the localization of the first division axis.

View Article and Find Full Text PDF

Background: Acquisition of lineage-specific cell cycle duration is a central feature of metazoan development. The mechanisms by which this is achieved during early embryogenesis are poorly understood. In the nematode Caenorhabditis elegans, differential cell cycle duration is apparent starting at the two-cell stage, when the larger anterior blastomere AB divides before the smaller posterior blastomere P(1).

View Article and Find Full Text PDF