Premise Of The Study: Intertidal macroalgae must resist extreme hydrodynamic forces imposed by crashing waves. How does frond flexibility mitigate drag, and how does flexibility affect predictions of drag and dislodgement in the field?
Methods: We characterized flexible reconfiguration of six seaweed species in a recirculating water flume, documenting both shape change and area reduction as fronds reorient. We then used a high-speed gravity-accelerated water flume to test our ability to predict drag under waves based on extrapolations of drag recorded at slower speeds.
Plant and animal biomechanists have much in common. Although their frame of reference differs, they think about the natural world in similar ways. While researchers studying animals might explore airflow around flapping wings, the actuation of muscles in arms and legs, or the material properties of spider silk, researchers studying plants might explore the flow of water around fluttering seaweeds, the grasping ability of climbing vines, or the material properties of wood.
View Article and Find Full Text PDFMacroalgae use flexibility and reconfiguration, i.e. the alteration of shape, size and orientation as water velocity increases, to reduce the hydrodynamic forces imposed in the wave-swept rocky intertidal zone.
View Article and Find Full Text PDFRocky intertidal organisms experience large hydrodynamic forces due to high water velocities created by breaking waves. Flexible organisms, like macroalgae, often experience lower drag than rigid organisms because their shape and size change as velocity increases. This phenomenon, known as reconfiguration, has been previously quantified as Vogel's E, a measure of the relationship between velocity and drag.
View Article and Find Full Text PDFGrowth rates of branches of colonies of the gorgonian Pseudopterogorgia elisabethae were monitored for 2 years on a reef at San Salvador Island, Bahamas. Images of 261 colonies were made at 6-month intervals and colony and branch growth analyzed. Branch growth rates differed between colonies and between the time intervals in which the measurements were made.
View Article and Find Full Text PDF