Background: In this work, we compare input level, feature level and decision level data fusion techniques for automatic detection of clinically significant prostate lesions (csPCa).
Methods: Multiple deep learning CNN architectures were developed using the Unet as the baseline. The CNNs use both multiparametric MRI images (T2W, ADC, and High b-value) and quantitative clinical data (prostate specific antigen (PSA), PSA density (PSAD), prostate gland volume & gross tumor volume (GTV)), and only mp-MRI images (n = 118), as input.
The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native gene.
View Article and Find Full Text PDFPurpose: Intraoral coils (IOCs) in magnetic resonance imaging (MRI) significantly improve the signal-to-noise ratio compared with conventional extraoral coils. To assess the safety of IOCs, we propose a 2-step procedure to evaluate radiofrequency-induced heating of IOCs and compare maximum temperature increases in 3 different types of IOCs.
Methods: The 2-step safety assessment consists of electric field measurements and simulations to identify local hotspots followed by temperature measurements during MRI.
Pigs are frequently applied as animal models in cardiovascular research due to their anatomical and physiological similarity to humans. For study planning and refinement, precise knowledge of the cardioaortic dimensions is essential. In a retrospective single-center study, the cardioaortic dimensions and left ventricular function of German Landrace pigs were assessed using cardiac MRI.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) provides a multitude of techniques to detect and characterize myocardial infarction. To correlate MRI findings with histology, in most cases terminal animal studies are performed; however, precise extraction and spatial correlation of myocardial tissue samples to MRI image data is difficult. In this proof of concept study, we present a 3D-printing technique to facilitate the extraction of tissue samples from myocardial regions.
View Article and Find Full Text PDFAccurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning.
View Article and Find Full Text PDFObjective: To investigate the feasibility of cerebral metabolic rate of oxygen consumption (CMRO) measurements with MRI at 3 Tesla in different brain regions.
Methods: CMRO represents a key indicator of the physiological state of brain tissue. Dynamic O-MRI with inhalation of isotopically enriched O gas has been used to quantify global CMRO in brain white (WM) and gray matter (GM).
Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non-invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra-fast and low-cost method based on fast chemical exchange.
View Article and Find Full Text PDFIncreasing scientific and regulatory concern regarding environmental concentrations of bisphenol A (BPA) increases the need to understand the sources and sinks of this chemical. We developed a coupled flow network/fugacity-based fate and transport model to assess the contribution of different emissions sources to the concentration of BPA in surface water in Germany. The model utilizes BPA loadings and sinks, BPA physicochemical properties, a water flow network, environmental characteristics, and fugacity equations.
View Article and Find Full Text PDFPurpose: MR guidance is used during therapy to detect and compensate for lesion motion. T -weighted MRI often has a superior lesion contrast in comparison to T -weighted real-time imaging. The purpose of this work was to design a fast T -weighted sequence capable of simultaneously acquiring two orthogonal slices, enabling real-time tracking of lesions.
View Article and Find Full Text PDFBisphenol A (BPA) enters the environment through various industrial and consumer-related pathways. Industrial sources include BPA manufacturing and secondary industrial uses such as the manufacturing of polymers and other substances based on or containing BPA. However, secondary sources and emissions to the environment, such as those related to the consumer use of articles containing BPA, may be more important than industrial emissions.
View Article and Find Full Text PDFPurpose: To improve intraoral transverse loop coil design for high-resolution dental MRI.
Methods: The transverse intraoral loop coil (tLoop) was modified (mtLoop) by overlapping the feed port conductors, bending the posterior section, introducing a parallel plate capacitor, optimizing the insulation thickness, and using it in receive-only mode. In addition, an MR-silent insulation was introduced.
Carbon-13 hyperpolarized pyruvate is about to become the next-generation contrast agent for molecular magnetic resonance imaging of cancer and other diseases. Here, efficient and rapid pyruvate hyperpolarization is achieved via signal amplification by reversible exchange (SABRE) with parahydrogen through synergistic use of substrate deuteration, alternating, and static microtesla magnetic fields. Up to 22 and 6% long-lasting C polarization ( = 3.
View Article and Find Full Text PDFObjective: Low-field MRI systems are expected to cause less RF heating in conventional interventional devices due to lower Larmor frequency. We systematically evaluate RF-induced heating of commonly used intravascular devices at the Larmor frequency of a 0.55 T system (23.
View Article and Find Full Text PDFMultiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide.
View Article and Find Full Text PDFPurpose: To test intra-arterial spin labeling (iASL) using active guiding catheters for myocardial perfusion measurements during magnetic resonance (MR)-guided interventions in a pig study.
Methods: In this work, a single-loop radiofrequency (RF) coil at the tip of a 6F active coronary catheter was used as a transmit coil for local spin labeling. The transmit magnetic RF field (B) of the coil and the labeling efficiency were determined, and iASL was tested in two pigs after the catheter was engaged in the aortic root, the ostium of the left coronary artery (LCA) under MR-guidance.
Magnetic nanoparticles (MNPs) have been widely applied as magnetic resonance imaging (MRI) contrast agents. MNPs offer significant contrast improvements in MRI through their tunable relaxivities, but to apply them as clinical contrast agents effectively, they should exhibit a high saturation magnetization, good colloidal stability and sufficient biocompatibility. In this work, we present a detailed description of the synthesis and the characterizations of europium-substituted Mn-Zn ferrite (MnZnEuFeO, = 0.
View Article and Find Full Text PDFConcerning voice efficiency considerations of different singing styles, from western classical singing to contemporary commercial music, only limited data is available to date. This single-subject study attempts to quantify the acoustic sound intensity within the human glottis depending on different vocal tract configurations and vocal fold vibration. Combining Finite-Element-Models derived from 3D-MRI data, audio recordings, and electroglottography (EGG) we analyzed vocal tract transfer functions, particle velocity and acoustic pressure at the glottis, and EGG-related quantities to evaluate voice efficiency at the glottal level and resonance characteristics of different voice qualities according to Estill Voice Training.
View Article and Find Full Text PDFBreath control is an important factor for singing voice production, but pedagogic descriptions of how a beneficial movement pattern should be performed vary widely and the underlying physiological processes are not understood in detail. Differences in respiratory movements during singing might be related to the sex of the singer. To study sex-related differences in respiratory kinematics during phonation, 12 singers (six male and six female) trained in the Western classical singing tradition were imaged with dynamic magnetic resonance imaging.
View Article and Find Full Text PDFPurpose: We aimed to assess critical temperature areas in the kidney parenchyma using magnetic resonance thermometry (MRT) in an ex vivo Holmium:YAG laser lithotripsy model.
Methods: Thermal effects of Ho:YAG laser irradiation of 14 W and 30 W were investigated in the calyx and renal pelvis of an ex vivo kidney with different laser application times (t) followed by a delay time (t) of t/t = 5/5 s, 5/10 s, 10/5 s, 10/10 s, and 20/0 s, with irrigation rates of 10, 30, 50, 70, and 100 ml/min. Using MRT, the size of the area was determined in which the thermal dose as measured by the Cumulative Equivalent Minutes (CEM) method exceeded a value of 120 min.
Many neurological disorders are analyzed and treated with implantable electrodes. Many patients with such electrodes have to undergo MRI examinations - often unrelated to their implant - at the risk of radio-frequency induced heating. The number of electrode contact sites of these implants keeps increasing due to improvements in manufacturing and computational algorithms.
View Article and Find Full Text PDFUse of three topical antiseptic compounds-benzalkonium chloride (BAC), benzethonium chloride (BZT), and chloroxylenol (PCMX)-has recently increased because of the phaseout of other antimicrobial ingredients (such as triclosan) in soaps and other disinfecting and sanitizing products. Further, use of sanitizing products in general increased during the coronavirus (COVID-19) pandemic. We assessed the environmental safety of BAC, BZT, and PCMX based on best available environmental fate and effects data from the scientific literature and privately held sources.
View Article and Find Full Text PDFPurpose: To maximize acquisition bandwidth in zero echo time (ZTE) sequences, readout gradients are already switched on during the RF pulse, creating unwanted slice selectivity. The resulting image distortions are amplified especially when the anatomy of interest is not located at the isocenter. We aim to characterize off-center ZTE MRI of extremities such as the shoulder, knee, and hip, adjusting the carrier frequency of the RF pulse excitation for each TR.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.