Publications by authors named "Michael Blatzer"

Serotonin reuptake inhibitor antidepressants such as fluoxetine are widely used to treat mood disorders. The mechanisms of action include an increase in extracellular level of serotonin, neurogenesis, and growth of vessels in the brain. We investigated whether fluoxetine could have broader peripheral regenerative properties.

View Article and Find Full Text PDF
Article Synopsis
  • Sepsis is a serious condition caused by infection that can lead to problems in organs, including making muscles weaker in very sick patients.
  • Researchers studied muscle samples from patients with sepsis and compared them to other sick groups to understand the changes happening in the muscles during septic shock.
  • They found that certain important processes in the body's energy production and fat breakdown were less active in sepsis patients, which might be causing muscle issues.
View Article and Find Full Text PDF

Introduction: Urgent action is needed to fight the ongoing coronavirus disease 2019 (COVID-19) pandemic by reducing the number of infected cases, contagiousness and severity. Chlorpromazine (CPZ), an antipsychotic from the phenothiazine group, is known to inhibit clathrin-mediated endocytosis and has antiviral activity against severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus. The aim of this in-vitro study was to test CPZ against SARS-CoV-2 in monkey and human cells.

View Article and Find Full Text PDF

It is well known that the intestine absorbs nutrients, electrolytes, and water. Chikina et al. recently demonstrated that it is also able to sense, recognize, and block the absorption of toxins through a very sophisticated interactive cellular cooperation between novel subpopulations of macrophages and epithelial cells.

View Article and Find Full Text PDF

Dendritic cells (DCs) possess intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. In turn, HIV-1 has evolved strategies to evade innate immune sensing by DCs resulting in suboptimal maturation and poor antiviral immune responses. We previously showed that complement-opsonized HIV-1 (HIV-C) was able to efficiently infect various DC subsets significantly higher than non-opsonized HIV-1 (HIV) and therefore also mediate a higher antiviral immunity.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol (GPI) anchored proteins are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. GPI anchored proteins are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, and immune response.

View Article and Find Full Text PDF
Article Synopsis
  • Research on cell wall construction in fungi began in the 70s and 80s, laying the groundwork for understanding its complexities.
  • The sequencing of fungal genomes revealed that many more proteins are involved in cell wall construction than previously believed, complicating the mystery further.
  • Advances in technology now allow for a deeper observation of cell wall construction, offering hope for resolving ongoing questions about fungal cell wall biosynthesis and exploring future research methods.
View Article and Find Full Text PDF

Major depressive disorder is a complex multifactorial condition with a so far poorly characterized underlying pathophysiology. Consequently, the available treatments are far from satisfactory as it is estimated that up to 30% of patients are resistant to conventional treatment. Recent comprehensive evidence has been accumulated which suggests that inflammation may be implied in the etiology of this disease.

View Article and Find Full Text PDF

Alterations of mitochondrial DNA (mtDNA) copy number have been associated with a wide variety of phenotypes and diseases. Unfortunately, the literature provides scarce methodical information about duplex targeting of nuclear and mtDNA that meets the quality criteria for qPCR. Therefore, we established a method for mtDNA copy number quantification using a quantitative PCR assay that allows for simultaneous targeting of a single copy nuclear gene (beta-2-microglobulin) and the t-RNA gene on the mtDNA.

View Article and Find Full Text PDF

The polyene antifungal amphotericin B (AmB) exerts a powerful and broad activity against a vast array of fungi and in general displays a remarkably low rate of antimicrobial resistance. Aspergillus terreus holds an exceptional position among the Aspergilli due to its intrinsic AmB resistance, in vivo and in vitro. Until now, the underlying mechanisms of polyene resistance were not well understood.

View Article and Find Full Text PDF

In contrast to obligate pathogens opportunistic pathogens such as Aspergillus fumigatus do not need a specific host to propagate or survive. However several characteristics of the saprophytic life-style and the selective pressure encountered in the primary ecological niche contribute to the virulence of A. fumigatus.

View Article and Find Full Text PDF

Morphological heterogeneity of cultures was observed during continued cultivation of amphotericin B (AMB)-resistant isolates on drug-free medium. Outgrowth leads to the emergence of multiple sectors that might result from increased growth rates at drug-free conditions. We evaluated the differences in AMB susceptibility and virulence between sector subcultures (ATSec), AMB-resistant (ATR) strains, and AMB-susceptible (ATS) strains.

View Article and Find Full Text PDF

In this study, we characterize the impact of antioxidative enzymes in amphotericin B (AmB)-resistant (ATR) and rare AmB-susceptible (ATS) clinical isolates. We elucidate expression profiles of superoxide dismutase (SOD)- and catalase (CAT)-encoding genes, enzymatic activities of SODs, and superoxide anion production and signaling pathways involved in the oxidative stress response (OSR) in ATS and ATR strains under AmB treatment conditions. We show that ATR strains possess almost doubled basal SOD activity compared to that of ATS strains and that ATR strains exhibit an enhanced OSR, with significantly higher mRNA levels and significantly increased transcripts in ATR strains upon AmB treatment.

View Article and Find Full Text PDF

Natural Killer (NK) cells are active against Aspergillus fumigatus, which in turn is able to impair the host defense. Unfortunately, little is known on the mutual interaction of NK cells and A. fumigatus.

View Article and Find Full Text PDF

DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs.

View Article and Find Full Text PDF

Aims: Invasive fungal infections have significantly increased over the past decades in immunocompromised individuals and high-risk patients. Amphotericin B (AmB) exerts a powerful and broad activity against a vast array of fungi and has a remarkably low rate of microbial resistance. However, most isolates of Aspergillus terreus developed an intrinsic resistance against AmB, and during this study, we characterized the mode of action of this polyene antifungal drug in more detail in resistant (ATR) and rare susceptible (ATS) clinical isolates of A.

View Article and Find Full Text PDF

The polyene antifungal amphotericin B (AmB) is widely used to treat life-threatening fungal infections. Even though AmB resistance is exceptionally rare in fungi, most Aspergillus terreus isolates exhibit an intrinsic resistance against the drug in vivo and in vitro. Heat shock proteins perform a fundamental protective role against a multitude of stress responses, thereby maintaining protein homeostasis in the organism.

View Article and Find Full Text PDF

Invasive aspergillosis is characterized by vascular invasion and thrombosis. In order to determine the antifungal activity of human platelets, hyphal elongation and metabolic activity of a clinical A. fumigatus isolate were measured.

View Article and Find Full Text PDF

Over the last years Gallium-68 ((68)Ga) has received tremendous attention for labeling of radiopharmaceuticals for positron emission tomography (PET). (68)Ga labeling of biomolecules is currently based on bifunctional chelators containing aminocarboxylates (mainly DOTA and NOTA). We have recently shown that cyclic peptide siderophores have very good complexing properties for (68)Ga resulting in high specific activities and excellent metabolic stabilities, in particular triacetylfusarinine-C (TAFC).

View Article and Find Full Text PDF

Acremonium chrysogenum is the natural producer of the beta-lactam antibiotic cephalosporin C and therefore of significant biotechnological importance. Here we identified and characterized the xylanase-encoding xyl1 gene and demonstrate that its promoter, xyl1(P), is suitable for conditional expression of heterologous genes in A. chrysogenum.

View Article and Find Full Text PDF

Purpose: (68)Ga-triacetylfusarinine C ((68)Ga-TAFC) and (68)Ga-ferrioxamine E ((68)Ga-FOXE) showed excellent targeting properties in Aspergillus fumigatus rat infection model. Here, we report on the comparison of specificity towards different microorganisms and human lung cancer cells (H1299).

Procedures: The in vitro uptake of (68)Ga-TAFC and (68)Ga-FOXE was studied in various fungal, bacterial and yeast cultures as well as in H1299 cells.

View Article and Find Full Text PDF

The filamentous fungus Acremonium chrysogenum is of enormous biotechnological importance as it represents the natural producer of the beta-lactam antibiotic cephalosporin C. However, a limitation in genetic tools, e.g.

View Article and Find Full Text PDF

Introduction: Siderophores are low-molecular-mass iron chelators serving as iron transporters for almost all bacteria, fungi and some plants. Iron is an essential element for majority of organisms and plays an important role in virulence of pathogenic organisms. (68)Ga is a positron emitter with complexing properties comparable to those of Fe(III) and readily available from a generator.

View Article and Find Full Text PDF