Sustainable land management requires reliable information about soil hydraulic properties. Among these properties, available water-holding capacity (AWC) is a key attribute, as it quantifies the amount of water available for plants that the soil can hold. Since direct measurements of AWC are costly, pedotransfer functions (PTF) are often used to estimate AWC, leveraging statistical relationships with properties that are easier to measure, such as texture, bulk density, and organic carbon content.
View Article and Find Full Text PDFAccording to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated.
View Article and Find Full Text PDFWe used observed climate data, an ensemble of four GCM-RCM combinations (global and regional climate models) and the water balance model mGROWA to estimate present and future groundwater recharge for the intensively-used Thau lagoon catchment in southern France. In addition to a highly resolved soil map, soil moisture distributions obtained from SAR-images (Synthetic Aperture Radar) were used to derive the spatial distribution of soil parameters covering the full simulation domain. Doing so helped us to assess the impact of different soil parameter sources on the modelled groundwater recharge levels.
View Article and Find Full Text PDF