Within a given brain region, individual neurons exhibit a wide variety of different feature selectivities. Here, we investigated the impact of this extensive functional diversity on the population neural code. Our approach was to build optimal decoders to discriminate among stimuli using the spiking output of a real, measured neural population and compare its performance against a matched, homogeneous neural population with the same number of cells and spikes.
View Article and Find Full Text PDFAn appealing new principle for neural population codes is that correlations among neurons organize neural activity patterns into a discrete set of clusters, which can each be viewed as a noise-robust population codeword. Previous studies assumed that these codewords corresponded geometrically with local peaks in the probability landscape of neural population responses. Here, we analyze multiple data sets of the responses of approximately 150 retinal ganglion cells and show that local probability peaks are absent under broad, nonrepeated stimulus ensembles, which are characteristic of natural behavior.
View Article and Find Full Text PDF