Publications by authors named "Michael Berna"

RNA interference (RNAi) is a biological process that evolved to protect eukaryotic organisms from foreign genes delivered by viruses. This process has been adapted as a powerful tool to treat numerous diseases through the delivery of small-interfering RNAs (siRNAs) to target cells to alter aberrant gene expression.Antibody-oligonucleotide conjugates (AOCs) are monoclonal antibodies with complexed siRNA or antisense oligonucleotides (ASOs) that have emerged to address some of the challenges faced by naked or chemically conjugated siRNA, which include rapid clearance from systemic circulation and lack of selective delivery of siRNA to target cells.

View Article and Find Full Text PDF

Unlike with new chemical entities, the biotransformation of therapeutic proteins (TPs) has not been routinely investigated or included in regulatory filings. Nevertheless, there is an expanding pool of evidence suggesting that a more in-depth understanding of biotransformation could better aid the discovery and development of increasingly diverse modalities. For instance, such biotransformation analysis of TPs affords important information on molecular stability, which in turn may shed light on any potential impact on binding affinity, potency, pharmacokinetics, efficacy, safety, or bioanalysis.

View Article and Find Full Text PDF

A recent report described a novel mechanism of action for an anti-proprotein convertase subtilisin-kexin type 9 (PCSK9) monoclonal antibody (LY3015014, or LY), wherein the antibody has improved potency and duration of action due to the PCSK9 epitope for LY binding. Unlike other antibodies, proteolysis of PCSK9 can occur when LY is bound to PCSK9. We hypothesized that this allowance of PCSK9 cleavage potentially improves LY efficiency through two pathways, namely lack of accumulation of intact PCSK9 and reduced clearance of LY.

View Article and Find Full Text PDF

Background: A thorough understanding of the biological role of oxyntomodulin (OXM) has been limited by the availability of sensitive and specific analytical tools for reliable in vivo characterization. Here, we utilized immunoaffinity capture coupled with high-resolution accurate mass LC-MS detection to quantify OXM and its primary catabolites.

Results: Quantification of intact OXM 1-37 in human and rat plasma occurred in pre- and post-prandial samples.

View Article and Find Full Text PDF

The phosphatase Rtr1 has been implicated in dephosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) during transcription elongation and in regulation of nuclear import of RNAPII. Although it has been shown that Rtr1 interacts with RNAPII in yeast and humans, the specific mechanisms that underlie Rtr1 recruitment to RNAPII have not been elucidated. To address this, we have performed an in-depth proteomic analysis of Rtr1 interacting proteins in yeast.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic treatment with high doses of PPAR agonists can lead to left ventricular hypertrophy (LVH), but the exact mechanism and biomarkers for it are not fully understood.
  • Natriuretic peptides such as NTproANP and NTproBNP were measured to explore their potential as biomarkers for LVH in rats treated with a PPARalpha/gamma dual agonist.
  • The study found correlations between cardiac changes and biomarker levels, indicating that serum NTproANP could be used to predict LVH and associated hemodynamic changes.
View Article and Find Full Text PDF

Low-abundance protein quantification has historically been performed using ligand binding techniques. However, due to the time and cost associated with developing enzyme-linked immunosorbent assay (ELISA), mass spectrometric approaches are playing an increasingly important role. Protein quantification at or below the nanogram per milliliter level using liquid chromatography/tandem mass spectrometry (LC/MS/MS) typically utilizes an immunoaffinity (IA) enrichment step such as immunoprecipitation.

View Article and Find Full Text PDF

Current drug discovery involves a highly iterative process pertaining to three core disciplines: biology, chemistry, and drug disposition. For most pharmaceutical companies the path to a drug candidate comprises similar stages: target identification, biological screening, lead generation, lead optimization, and candidate selection. Over the past decade, the overall efficiency of drug discovery has been greatly improved by a single instrumental technique, liquid chromatography/mass spectrometry (LC/MS).

View Article and Find Full Text PDF

Brain natriuretic peptide (BNP) and N-terminal proBNP (NTproBNP) are well established in the clinic as biomarkers of heart failure. BNP hormone and the inactive NTproBNP are predominantly secreted in the ventricles of the heart in response to pressure overload and, consequently, are being investigated as markers of drug-induced cardiac hypertrophy in rat to support drug development. In the work presented here, an immunoaffinity-based LC/MS/MS assay was developed and validated to measure a selective tryptic fragment of NTproBNP in rat serum.

View Article and Find Full Text PDF

Heart fatty acid binding protein (Fabp3) is a cytosolic protein expressed primarily in heart, and to a lesser extent in skeletal muscle, brain, and kidney. During myocardial injury, the Fabp3 level in serum is elevated rapidly, making it an ideal early marker for myocardial infarction. In this study, an MS-based selected reaction monitoring method (LC-SRM) was developed for quantifying Fabp3 in rat serum.

View Article and Find Full Text PDF

Myosin light chain 1 (Myl3) is a 23-kDa isoform of one of the subunits of myosin, a protein involved in muscle contraction. Myl3 is presently being studied as a biomarker of cardiac necrosis to predict drug-induced cardiotoxicity, and in the work presented here, an LC/MS/MS assay was developed and validated to measure Myl3 in rat serum. The key steps in this approach involved immunoaffinity purification of Myl3 from serum followed by on-bead digestion with trypsin to release a surrogate peptide.

View Article and Find Full Text PDF

The field of proteomics is rapidly turning towards targeted mass spectrometry (MS) methods to quantify putative markers or known proteins of biological interest. Historically, the enzyme-linked immunosorbent assay (ELISA) has been used for targeted protein analysis, but, unfortunately, it is limited by the excessive time required for antibody preparation, as well as concerns over selectivity. Despite the ability of proteomics to deliver increasingly quantitative measurements, owing to limited sensitivity, the leads generated are in the microgram per milliliter range.

View Article and Find Full Text PDF

The 40 and 42 amino-acid residue forms of amyloid beta (Abeta(1-40) and Abeta(1-42)) in cerebrospinal fluid (CSF) have been proposed as potential biomarkers of Alzheimer's disease (AD). Quantitative analyses of Abeta peptides in CSF have relied almost exclusively on the use of immunoassay-based assays such as the enzyme-linked immunosorbent assay (ELISA) procedure. However, due to the ability of the Abeta peptides to readily self-aggregate or bind to other proteins and glassware, such analyses are extremely challenging.

View Article and Find Full Text PDF

The ability to selectively measure serine enantiomer concentrations in rat brain microdialysate is essential during drug discovery to study the interaction of d-serine with the N-methyl-d-aspartate (NMDA) subtype of the glutamate receptor. NMDA receptor-stimulating agents, such as d-serine, have been shown to reduce the negative symptoms and cognitive dysfunction in individuals with schizophrenia when added to conventional or atypical antipsychotic drug regimens. In the work presented here, an LC/MS/MS assay was developed and validated to simultaneously measure d-serine and l-serine concentrations in rat brain microdialysate.

View Article and Find Full Text PDF

Proteolytic fragments of type II collagen, a major component of joint tissue, have recently been identified as biomarkers for osteoarthritis, a progressive disease associated with cartilage degeneration. A liquid chromatography/tandem mass spectrometry (MS/MS) assay that utilizes online immunoaffinity chromatography and column switching was developed in our laboratory for the neoepitope of type II collagen (NET2C). During method development, peptide collision-induced dissociation (CID) was found to be a significant source of assay variation, which exceeded 10% CV, despite the fact that a stable-isotope-labeled (SIL) internal standard was used to minimize imprecision.

View Article and Find Full Text PDF

The first endocannabinoid, anandamide, was discovered in 1992. Since then, two other endocannabinoid agonists have been identified, 2-arachidonyl glycerol and, more recently, noladin ether. Here, we report the identification and pharmacological characterization of a novel endocannabinoid, virodhamine, with antagonist properties at the CB1 cannabinoid receptor.

View Article and Find Full Text PDF

LC/MS/MS based bioanalysis using atmospheric pressure ionization (API)-style interfaces has now been applied for over a decade. This technology, which initially found application for clinical bioanalysis, is now firmly established as the primary bioanalytical tool for ADME studies related to drug discovery and lead optimization (LO). This review focuses on recent advances in LC/MS/MS based bioanalysis in support of drug discovery and LO.

View Article and Find Full Text PDF

The effects of flow rate and column length on analyte response (peak area and height), total cycle time, column backpressure, and elution volume are presented. Rapid chromatographic separations and tandem mass spectrometric (MS/MS) detection are applied to the supernatant of protein-precipitated plasma standards containing four compounds from a drug discovery screen. The plasma samples were injected onto three C-18 columns (2 x 10,2.

View Article and Find Full Text PDF